Krishna Dixit, Hema Bora, Gaurav Kulkarni, Nantu Dogra, Tamal Kanti Sengupta, Gayatri Mukherjee, Santanu Dhara
{"title":"Keratin Rich PCL Blended Nano-Microfibrous Sheet as a Bioactive Immunomodulatory ECM Analog Toward Dermal Wound Healing—In Vitro and In Vivo Responses","authors":"Krishna Dixit, Hema Bora, Gaurav Kulkarni, Nantu Dogra, Tamal Kanti Sengupta, Gayatri Mukherjee, Santanu Dhara","doi":"10.1002/jbm.a.37888","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Being an excretory scleroprotein, human hair-derived keratin with inherent bioactive peptide cues may actively participate in an immunomodulatory role in the wound microenvironment. In the current study, nano-microfibrous structural attributes mimicking the extracellular matrix were prepared using a polymer blend containing a high loading of keratin as a bioactive matrix by electrospinning, where polycaprolactone (PCL) was used as an electrospinnable aid. The FESEM analysis showed smooth fibers with diameters ranging from 100 to 220 nm. High keratin loading facilitated improved cellular affinity due to the presence of bioactive peptide cues. Physico-chemical characterization confirmed the presence of protein within the PCL matrix, and the modulus of the material (~25 MPa) was found to be similar to that of native skin. Furthermore, keratin-rich matrices evidenced the potential to modulate macrophages toward M2 macrophages. In vitro assessment with human dermal fibroblasts (HDFs) demonstrated enhanced cytocompatibility-like cellular activity and cell proliferation. In vivo studies evidenced the proactive role of the KPCL matrix in supporting full-thickness wound healing and balancing macrophage activity (CD68 and CD206 immunostaining). Immunohistochemistry and RT-PCR studies showed increased COLI and COLIII expression, evidencing dermal reconstruction within 18 days. Enhanced P63 and K14 expression supported the synergistic role of reepithelialization by the matrix enriched with keratin. Overall, the study showed that the keratin-based matrix facilitates skin wound healing.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37888","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Being an excretory scleroprotein, human hair-derived keratin with inherent bioactive peptide cues may actively participate in an immunomodulatory role in the wound microenvironment. In the current study, nano-microfibrous structural attributes mimicking the extracellular matrix were prepared using a polymer blend containing a high loading of keratin as a bioactive matrix by electrospinning, where polycaprolactone (PCL) was used as an electrospinnable aid. The FESEM analysis showed smooth fibers with diameters ranging from 100 to 220 nm. High keratin loading facilitated improved cellular affinity due to the presence of bioactive peptide cues. Physico-chemical characterization confirmed the presence of protein within the PCL matrix, and the modulus of the material (~25 MPa) was found to be similar to that of native skin. Furthermore, keratin-rich matrices evidenced the potential to modulate macrophages toward M2 macrophages. In vitro assessment with human dermal fibroblasts (HDFs) demonstrated enhanced cytocompatibility-like cellular activity and cell proliferation. In vivo studies evidenced the proactive role of the KPCL matrix in supporting full-thickness wound healing and balancing macrophage activity (CD68 and CD206 immunostaining). Immunohistochemistry and RT-PCR studies showed increased COLI and COLIII expression, evidencing dermal reconstruction within 18 days. Enhanced P63 and K14 expression supported the synergistic role of reepithelialization by the matrix enriched with keratin. Overall, the study showed that the keratin-based matrix facilitates skin wound healing.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.