Anastasia Tsianaka, Kimberly Fichtel, Günter E.M. Tovar, Alexander Southan
{"title":"Simultaneous Selective and Quantitative Sensing of Diclofenac and Metoprolol via Electrical Conductance of Two Polyelectrolyte Hydrogels","authors":"Anastasia Tsianaka, Kimberly Fichtel, Günter E.M. Tovar, Alexander Southan","doi":"10.1002/adsr.202400141","DOIUrl":null,"url":null,"abstract":"<p>Hydrogels containing functional groups are highly interesting for sensor applications as they can change their physical properties by interaction with their environment. In this study, it is demonstrated that by monitoring the conductance of two different functional hydrogels, the concentrations of two different drugs in aqueous solution can be selectively and quantitatively measured simultaneously based on non-specific interactions. Detailed characterization of the competitive drug adsorption on the hydrogels allows the description of both hydrogel conductances as a function of the drug concentrations based on physical models. The result is a system of non-linear equations that can be solved for the drug concentrations. The different affinities and conductance responses of the hydrogels for the two drugs is a prerequisite, which is usually achieved with different materials. This approach is demonstrated with hydrogels based on poly(ethylene glycol), functionalized with the ionic monomers [2-(acryloyloxy)ethyl] trimethylammonium chloride (AETA) and 3-sulfopropyl acrylate potassium salt (SPA), and the drugs diclofenac and metoprolol. The hydrogel conductance is found to be linear with drug concentration in the hydrogels, which in turn is described by a non-linear Langmuir-type competitive adsorption isotherm. The proposed approach thus shows potential for future studies on more complex mixtures by including a larger variety of functional hydrogels.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400141","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels containing functional groups are highly interesting for sensor applications as they can change their physical properties by interaction with their environment. In this study, it is demonstrated that by monitoring the conductance of two different functional hydrogels, the concentrations of two different drugs in aqueous solution can be selectively and quantitatively measured simultaneously based on non-specific interactions. Detailed characterization of the competitive drug adsorption on the hydrogels allows the description of both hydrogel conductances as a function of the drug concentrations based on physical models. The result is a system of non-linear equations that can be solved for the drug concentrations. The different affinities and conductance responses of the hydrogels for the two drugs is a prerequisite, which is usually achieved with different materials. This approach is demonstrated with hydrogels based on poly(ethylene glycol), functionalized with the ionic monomers [2-(acryloyloxy)ethyl] trimethylammonium chloride (AETA) and 3-sulfopropyl acrylate potassium salt (SPA), and the drugs diclofenac and metoprolol. The hydrogel conductance is found to be linear with drug concentration in the hydrogels, which in turn is described by a non-linear Langmuir-type competitive adsorption isotherm. The proposed approach thus shows potential for future studies on more complex mixtures by including a larger variety of functional hydrogels.