Automated Microfluidic Platform for High-Throughput Biosensor Development

Shitanshu Devrani, Daniel Tietze, Alesia A. Tietze
{"title":"Automated Microfluidic Platform for High-Throughput Biosensor Development","authors":"Shitanshu Devrani,&nbsp;Daniel Tietze,&nbsp;Alesia A. Tietze","doi":"10.1002/adsr.202400116","DOIUrl":null,"url":null,"abstract":"<p>Biorecognition elements immobilized into nanopores have transformed point-of-care (POC) diagnostics by converting molecular interactions into electrical and fluorescent signals.This study introduces Bio-Sensei, a high-throughput screening (HTS) microfluidic platform based on nanopore biosensing. Integrating a robotic sampler, electrochemical, and fluorescence setup, Bio-Sensei operates as an Internet of Things (IoT) platform with integrated data analysis. The platform's utility is demonstrated on functionalized with an amino terminal Cu(II)- and Ni(II)-binding (ATCUN) peptide ion track-etched membrane. Automated testing achieves a significantly higher F-stat value than the critical threshold, while unsupervised clustering reveals optimal nanopores pore size. The biosensor demonstrates remarkable stability, selectivity, and sensitivity with detection limits of 10<sup>−6</sup> using fluorescence and 10<sup>−15</sup> M using cyclic voltammetry measurements. Combining these methods enhances machine learning models for Cu<sup>2+</sup> concentration prediction, achieving receiver operating characteristic area under the curve values exceeding 95%.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400116","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biorecognition elements immobilized into nanopores have transformed point-of-care (POC) diagnostics by converting molecular interactions into electrical and fluorescent signals.This study introduces Bio-Sensei, a high-throughput screening (HTS) microfluidic platform based on nanopore biosensing. Integrating a robotic sampler, electrochemical, and fluorescence setup, Bio-Sensei operates as an Internet of Things (IoT) platform with integrated data analysis. The platform's utility is demonstrated on functionalized with an amino terminal Cu(II)- and Ni(II)-binding (ATCUN) peptide ion track-etched membrane. Automated testing achieves a significantly higher F-stat value than the critical threshold, while unsupervised clustering reveals optimal nanopores pore size. The biosensor demonstrates remarkable stability, selectivity, and sensitivity with detection limits of 10−6 using fluorescence and 10−15 M using cyclic voltammetry measurements. Combining these methods enhances machine learning models for Cu2+ concentration prediction, achieving receiver operating characteristic area under the curve values exceeding 95%.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信