Deciphering the allosteric dynamics of GPR120-fatty acid interactions within a bilayer nanogold electrochemical receptor biosensor: the impact of replacing tryptophan 198 with proline

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Wei Xu, Dan Meng, Ming Li, Qingwei Song, Wenling Wu, Yimeng Bi, Chenyu Xu, Yifei Zhang, Dingqiang Lu
{"title":"Deciphering the allosteric dynamics of GPR120-fatty acid interactions within a bilayer nanogold electrochemical receptor biosensor: the impact of replacing tryptophan 198 with proline","authors":"Wei Xu,&nbsp;Dan Meng,&nbsp;Ming Li,&nbsp;Qingwei Song,&nbsp;Wenling Wu,&nbsp;Yimeng Bi,&nbsp;Chenyu Xu,&nbsp;Yifei Zhang,&nbsp;Dingqiang Lu","doi":"10.1007/s10544-025-00736-3","DOIUrl":null,"url":null,"abstract":"<div><p>GPR120 is a free fatty acid receptor capable of signalling excess fatty acids. GPR120 can be activated by various types of free fatty acids, causing intracellular signal transduction and exerting energy regulation, immune homeostasis, and neuronal functions. It has been suggested that Trp198 may be an important residue in the recognition and activation of GPR120 by fatty acid ligands, but direct experimental evidence is lacking. In this study, a GPR120-based bilayer gold nanoparticle biosensor (Trp198→Pro) was constructed by genetically manipulating Trp198 on GPR120 by replacing it with proline for the determination of linkage variability between 14 naturally occurring fatty acid ligands and mutant receptors. The results showed that both before and after amino acid substitution the GPR120 bilayer nanogold receptor sensor responded to all 14 natural fatty acid ligands. And the linkage transformation constants of crotonic acid, dodecanoic acid, oleic acid, linoleic acid, α-linolenic acid, and DHA decreased after Trp198 was replaced by Pro. To further reveal its molecular recognition mechanism, molecular simulation docking experiments were performed on GPR120 and 14 fatty acid ligand compounds before and after amino acid substitutions, respectively. The results showed that before and after the amino acid substitutions, the binding conformational affinity values of GPR120 docked with the ligands were negative, implying that these fatty acid ligands can spontaneously bind to the active pocket of GPR120 without absorbing external energy. Upon replacement of Trp198 by Pro, the active pocket of GPR120 at the optimal docking site with the fatty acid ligand is altered, leading to changes in the amino acid residues that exert the interaction. The above results demonstrate that Trp198 indeed plays an important role in the recognition of fatty acid ligands on GPR120. The present study provides direct quantitative evidence for the roles played by different amino acid residues in receptor-ligand recognition and interaction. At the same time, it provides new ideas for the study of other receptor-ligand-linked metastable mechanisms and kinetic laws.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00736-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

GPR120 is a free fatty acid receptor capable of signalling excess fatty acids. GPR120 can be activated by various types of free fatty acids, causing intracellular signal transduction and exerting energy regulation, immune homeostasis, and neuronal functions. It has been suggested that Trp198 may be an important residue in the recognition and activation of GPR120 by fatty acid ligands, but direct experimental evidence is lacking. In this study, a GPR120-based bilayer gold nanoparticle biosensor (Trp198→Pro) was constructed by genetically manipulating Trp198 on GPR120 by replacing it with proline for the determination of linkage variability between 14 naturally occurring fatty acid ligands and mutant receptors. The results showed that both before and after amino acid substitution the GPR120 bilayer nanogold receptor sensor responded to all 14 natural fatty acid ligands. And the linkage transformation constants of crotonic acid, dodecanoic acid, oleic acid, linoleic acid, α-linolenic acid, and DHA decreased after Trp198 was replaced by Pro. To further reveal its molecular recognition mechanism, molecular simulation docking experiments were performed on GPR120 and 14 fatty acid ligand compounds before and after amino acid substitutions, respectively. The results showed that before and after the amino acid substitutions, the binding conformational affinity values of GPR120 docked with the ligands were negative, implying that these fatty acid ligands can spontaneously bind to the active pocket of GPR120 without absorbing external energy. Upon replacement of Trp198 by Pro, the active pocket of GPR120 at the optimal docking site with the fatty acid ligand is altered, leading to changes in the amino acid residues that exert the interaction. The above results demonstrate that Trp198 indeed plays an important role in the recognition of fatty acid ligands on GPR120. The present study provides direct quantitative evidence for the roles played by different amino acid residues in receptor-ligand recognition and interaction. At the same time, it provides new ideas for the study of other receptor-ligand-linked metastable mechanisms and kinetic laws.

Abstract Image

解读双层纳米金电化学受体生物传感器中gpr120 -脂肪酸相互作用的变构动力学:用脯氨酸取代色氨酸198的影响
GPR120是一种游离脂肪酸受体,能够传递过量脂肪酸的信号。GPR120可被多种游离脂肪酸激活,引起细胞内信号转导,发挥能量调节、免疫稳态和神经元功能。已有研究认为Trp198可能是脂肪酸配体识别和激活GPR120的重要残基,但缺乏直接的实验证据。本研究利用脯氨酸取代GPR120上的Trp198,构建了基于GPR120的双层金纳米粒子生物传感器(Trp198→Pro),用于测定14种天然脂肪酸配体与突变受体之间的链接变异性。结果表明,在氨基酸取代前后,GPR120双层纳米金受体传感器对14种天然脂肪酸配体均有响应。Pro取代Trp198后,巴豆酸、十二烷酸、油酸、亚油酸、α-亚麻酸和DHA的连锁转化常数降低。为进一步揭示其分子识别机制,分别对氨基酸取代前后的GPR120和14脂肪酸配体化合物进行了分子模拟对接实验。结果表明,在氨基酸取代前后,与配体对接的GPR120的结合构象亲和值均为负,说明这些脂肪酸配体可以不吸收外界能量而自发结合到GPR120的活性口袋上。在Pro取代Trp198后,GPR120与脂肪酸配体最佳对接位点的活性口袋发生改变,导致发挥相互作用的氨基酸残基发生变化。以上结果表明,Trp198在GPR120对脂肪酸配体的识别中确实起着重要的作用。本研究为不同氨基酸残基在受体-配体识别和相互作用中所起的作用提供了直接的定量证据。同时也为其他受体配体连接亚稳态机制和动力学规律的研究提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信