Ultrasensitive detection of doxycycline enabled by oxygen vacancy modulated TiO2 nanotubes

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Juan Gao, Sen Yang, Chen Xu, Zerui Dong, SiZhu Chen, Lingcheng Zheng, Leilei Lan, Gang He
{"title":"Ultrasensitive detection of doxycycline enabled by oxygen vacancy modulated TiO2 nanotubes","authors":"Juan Gao,&nbsp;Sen Yang,&nbsp;Chen Xu,&nbsp;Zerui Dong,&nbsp;SiZhu Chen,&nbsp;Lingcheng Zheng,&nbsp;Leilei Lan,&nbsp;Gang He","doi":"10.1007/s00604-025-07072-6","DOIUrl":null,"url":null,"abstract":"<div><p>TiO<sub>2</sub> nanotubes rich in oxygen vacancies (Ov), which were successfully fabricated on Ti foils, were used as the working electrode of a photoelectrochemical (PEC) sensor. The TiO<sub>2</sub> nanotube electrode optimized with abundant Ov demonstrated a remarkable photocurrent density of 1.03 mA/cm<sup>2</sup>, which is approximately 2.9 times higher than that of the TiO<sub>2</sub> nanotube electrode. When applied to the detection of DOC, this electrode exhibited a wide linear detection range spanning from 0.1 to 100 μM and achieved an exceptionally low detection limit of 0.043 μM with a signal-to-noise ratio of 3. Furthermore, comparative experiments indicated that the Ov-enriched TiO<sub>2</sub> nanotube electrode exhibited excellent anti-interference capabilities and long-term stability, ensuring the accuracy and reliability of the detection outcomes. The superior detection performance is primarily attributed to two aspects: on one hand, Ov act as electron traps, facilitating the capture and transfer of photogenerated electrons, effectively prolonging the lifetime of these carriers; on the other hand, Ov also serves as active sites, enhancing the adsorption of DOC molecules and reaction kinetics, further amplifying the detection signal. This work offers a theoretical and experimental groundwork for the rapid monitoring of residual antibiotics.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div><div><p>Graphical Abstract</p></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07072-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

TiO2 nanotubes rich in oxygen vacancies (Ov), which were successfully fabricated on Ti foils, were used as the working electrode of a photoelectrochemical (PEC) sensor. The TiO2 nanotube electrode optimized with abundant Ov demonstrated a remarkable photocurrent density of 1.03 mA/cm2, which is approximately 2.9 times higher than that of the TiO2 nanotube electrode. When applied to the detection of DOC, this electrode exhibited a wide linear detection range spanning from 0.1 to 100 μM and achieved an exceptionally low detection limit of 0.043 μM with a signal-to-noise ratio of 3. Furthermore, comparative experiments indicated that the Ov-enriched TiO2 nanotube electrode exhibited excellent anti-interference capabilities and long-term stability, ensuring the accuracy and reliability of the detection outcomes. The superior detection performance is primarily attributed to two aspects: on one hand, Ov act as electron traps, facilitating the capture and transfer of photogenerated electrons, effectively prolonging the lifetime of these carriers; on the other hand, Ov also serves as active sites, enhancing the adsorption of DOC molecules and reaction kinetics, further amplifying the detection signal. This work offers a theoretical and experimental groundwork for the rapid monitoring of residual antibiotics.

Graphical abstract

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信