Sound Intensity Fluctuations Caused by the Motion of Internal Wave Solitons in the ASIAEX Experiment

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS
V. A. Grigorev
{"title":"Sound Intensity Fluctuations Caused by the Motion of Internal Wave Solitons in the ASIAEX Experiment","authors":"V. A. Grigorev","doi":"10.1134/S1063771024603121","DOIUrl":null,"url":null,"abstract":"<div><p>One of the episodes of the ASIAEX 2001 experiment (in the South China Sea) is considered, in which a large internal wave soliton moved along two stationary acoustic paths 32 and 19 km long, and associated fluctuations in the intensity of low-frequency sound (224 and 300 Hz) were observed. During the study, the phenomenon of constancy of the dominant frequency of fluctuations over time was discovered. For example, during 6-h soliton motion along a long path, where the sea depth changed three times (from 350 to 120 m), and the soliton velocity, two times (from 2 to 1 m/s), the dominant frequency of fluctuations remained approximately constant at 1.5 cph (cycles per hour) with an accuracy of 10%. The paper analyzes the causes of this phenomenon. For this, the soliton is considered within the framework of a two-layer model of the aquatic environment, and sound propagation, within the framework of mode and ray theories. According to ray theory, the dominant frequency of fluctuations is determined by the ratio of the soliton velocity to the ray cycle responsible for the dominant fluctuations. In mode theory, a similar expression is obtained where the role of the ray cycle is played by a combination of spatial beat periods of several pairs of modes. It is shown that with a change in the sea depth, the soliton velocity and the ray cycle change almost proportionally, as a result of which the dominant frequency of fluctuations remains constant. The described phenomenon may be universal and not limited to the ASIAEX water area. The constancy of the dominant frequency allows one, in particular, to determine the variable soliton velocity as a function of time or distance, which is successfully demonstrated in the work and can be used for acoustic monitoring of solitons.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"971 - 988"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771024603121","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the episodes of the ASIAEX 2001 experiment (in the South China Sea) is considered, in which a large internal wave soliton moved along two stationary acoustic paths 32 and 19 km long, and associated fluctuations in the intensity of low-frequency sound (224 and 300 Hz) were observed. During the study, the phenomenon of constancy of the dominant frequency of fluctuations over time was discovered. For example, during 6-h soliton motion along a long path, where the sea depth changed three times (from 350 to 120 m), and the soliton velocity, two times (from 2 to 1 m/s), the dominant frequency of fluctuations remained approximately constant at 1.5 cph (cycles per hour) with an accuracy of 10%. The paper analyzes the causes of this phenomenon. For this, the soliton is considered within the framework of a two-layer model of the aquatic environment, and sound propagation, within the framework of mode and ray theories. According to ray theory, the dominant frequency of fluctuations is determined by the ratio of the soliton velocity to the ray cycle responsible for the dominant fluctuations. In mode theory, a similar expression is obtained where the role of the ray cycle is played by a combination of spatial beat periods of several pairs of modes. It is shown that with a change in the sea depth, the soliton velocity and the ray cycle change almost proportionally, as a result of which the dominant frequency of fluctuations remains constant. The described phenomenon may be universal and not limited to the ASIAEX water area. The constancy of the dominant frequency allows one, in particular, to determine the variable soliton velocity as a function of time or distance, which is successfully demonstrated in the work and can be used for acoustic monitoring of solitons.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信