On integrability of Klein-Gordon equations in electromagnetic fields invariant under subgroups of the Poincare group

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
A. A. Magazev, I. V. Shirokov
{"title":"On integrability of Klein-Gordon equations in electromagnetic fields invariant under subgroups of the Poincare group","authors":"A. A. Magazev,&nbsp;I. V. Shirokov","doi":"10.1007/s11182-024-03324-9","DOIUrl":null,"url":null,"abstract":"<div><p>The structure of the symmetry operator algebra of the Klein-Gordon equation in an external electromagnetic field is described in terms of cohomologies of the Poincare subalgebras. An application of the method of noncommutative integration to constructing exact solutions of the Klein-Gordon equation is discussed. A classification of inequivalent electromagnetic fields invariant under simply transitive subgroups of the Poincare group, admitting the noncommutative integration of the Klein-Gordon equation, is presented.</p></div>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 11","pages":"1878 - 1886"},"PeriodicalIF":0.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03324-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The structure of the symmetry operator algebra of the Klein-Gordon equation in an external electromagnetic field is described in terms of cohomologies of the Poincare subalgebras. An application of the method of noncommutative integration to constructing exact solutions of the Klein-Gordon equation is discussed. A classification of inequivalent electromagnetic fields invariant under simply transitive subgroups of the Poincare group, admitting the noncommutative integration of the Klein-Gordon equation, is presented.

用 Poincare 子代数的同调描述了外部电磁场中克莱因-戈登方程的对称算子代数结构。讨论了非交换积分法在构建克莱因-戈登方程精确解中的应用。介绍了允许克莱因-戈登方程的非交换积分的不等效电磁场的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信