Three-dimensional stability analysis and groundwater table estimation of a retrogressive shallow soil landslide: A case study of the Zhongzhai landslide in Gansu Province, China

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Shiyao Jia, Qiang Xu, Wanlin Chen, Dalei Peng, Pinliang Li, Haoxing Zhao, Haoyu Li, Xiaoling Song, Hailong Chen
{"title":"Three-dimensional stability analysis and groundwater table estimation of a retrogressive shallow soil landslide: A case study of the Zhongzhai landslide in Gansu Province, China","authors":"Shiyao Jia,&nbsp;Qiang Xu,&nbsp;Wanlin Chen,&nbsp;Dalei Peng,&nbsp;Pinliang Li,&nbsp;Haoxing Zhao,&nbsp;Haoyu Li,&nbsp;Xiaoling Song,&nbsp;Hailong Chen","doi":"10.1007/s10064-025-04160-y","DOIUrl":null,"url":null,"abstract":"<div><p>Earthquakes, extreme rainfall, and other conditions can trigger a considerable number of shallow landslides, posing significant safety hazards. Due to the lack of obvious warning signs before sliding, such landslides are not apparent. Traditional remote sensing images and conventional aerial survey data cannot effectively and accurately reflect deformation-related warning signs of sliding. Thus, investigating the subsurface structural characteristics of slopes has become crucial for studying retrogressive shallow soil landslides. This paper takes the Zhongzhai landslide in Niangniangba town, Qinzhou District, Tianshui city, Gansu Province, China, as the research object. Electrical resistivity profiles of the landslide area were obtained by electrical resistivity tomography (ERT), using in situ light dynamic penetration tests and core drilling to confirm the relationship between resistivity and formation lithology to realize the fusion of multisource data. A three-dimensional model of electrical resistivity was constructed to characterize the stratigraphic structure. Combined with unmanned aerial vehicle (UAV) photogrammetry and on-site investigation to obtain terrain features, a three-dimensional geological model of the Zhongzhai landslide was constructed. The development process and genesis mechanism of landslides at the loess–bedrock interface were explored via numerical simulation. The results demonstrate how the stratigraphic structure and water table influence the development of retrogressive shallow soil landslides. This article can provide a reference for the stability evaluation and prediction of retrogressive shallow soil landslides.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04160-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Earthquakes, extreme rainfall, and other conditions can trigger a considerable number of shallow landslides, posing significant safety hazards. Due to the lack of obvious warning signs before sliding, such landslides are not apparent. Traditional remote sensing images and conventional aerial survey data cannot effectively and accurately reflect deformation-related warning signs of sliding. Thus, investigating the subsurface structural characteristics of slopes has become crucial for studying retrogressive shallow soil landslides. This paper takes the Zhongzhai landslide in Niangniangba town, Qinzhou District, Tianshui city, Gansu Province, China, as the research object. Electrical resistivity profiles of the landslide area were obtained by electrical resistivity tomography (ERT), using in situ light dynamic penetration tests and core drilling to confirm the relationship between resistivity and formation lithology to realize the fusion of multisource data. A three-dimensional model of electrical resistivity was constructed to characterize the stratigraphic structure. Combined with unmanned aerial vehicle (UAV) photogrammetry and on-site investigation to obtain terrain features, a three-dimensional geological model of the Zhongzhai landslide was constructed. The development process and genesis mechanism of landslides at the loess–bedrock interface were explored via numerical simulation. The results demonstrate how the stratigraphic structure and water table influence the development of retrogressive shallow soil landslides. This article can provide a reference for the stability evaluation and prediction of retrogressive shallow soil landslides.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信