Some Peculiarities of Intense Acoustic Beam Diffraction on a Semiscreen Obstacle

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS
V. K. Bakhtin, M. A. Garasev, S. N. Gurbatov, M. S. Deryabin, D. A. Kasyanov
{"title":"Some Peculiarities of Intense Acoustic Beam Diffraction on a Semiscreen Obstacle","authors":"V. K. Bakhtin,&nbsp;M. A. Garasev,&nbsp;S. N. Gurbatov,&nbsp;M. S. Deryabin,&nbsp;D. A. Kasyanov","doi":"10.1134/S1063771024602383","DOIUrl":null,"url":null,"abstract":"<p>Some results of a physical experiment on studying the evolution of an intense acoustic beam on a semiscreen obstacle are reported. The beam is formed by using a plane piezoceramic transducer with a center frequency of 2 MHz. The semiscreen obstacle is installed beyond the last diffraction maximum of the linear distribution of an acoustic field from the used transducer along the acoustic axis The transverse distribution of the nonlinear acoustic field is studied for different distances from the semiscreen obstacle. Initial acoustic beam intensities correspond to acoustic Reynolds numbers from 5 to 30. It is shown that evolution of the beam behind the obstacle is governed by cumulative diffraction and nonlinear effects. It is demonstrated that the transverse distribution of the acoustic field behind the obstacle strongly depends on the intensity of the beam incident on the obstacle. In particular, a strong dependence on the intensity of the incident beam is observed for the position of diffraction maxima in the transverse distribution of the acoustic beam behind the semiscreen obstacle. The effect related with the appearance of additional extrema in the transverse field distribution at different harmonics is revealed. Numerical simulation based on the Khokhlov–Zabolotskaya–Kuznetsov equation is carried out with results confirmed by experimental data.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"933 - 939"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771024602383","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Some results of a physical experiment on studying the evolution of an intense acoustic beam on a semiscreen obstacle are reported. The beam is formed by using a plane piezoceramic transducer with a center frequency of 2 MHz. The semiscreen obstacle is installed beyond the last diffraction maximum of the linear distribution of an acoustic field from the used transducer along the acoustic axis The transverse distribution of the nonlinear acoustic field is studied for different distances from the semiscreen obstacle. Initial acoustic beam intensities correspond to acoustic Reynolds numbers from 5 to 30. It is shown that evolution of the beam behind the obstacle is governed by cumulative diffraction and nonlinear effects. It is demonstrated that the transverse distribution of the acoustic field behind the obstacle strongly depends on the intensity of the beam incident on the obstacle. In particular, a strong dependence on the intensity of the incident beam is observed for the position of diffraction maxima in the transverse distribution of the acoustic beam behind the semiscreen obstacle. The effect related with the appearance of additional extrema in the transverse field distribution at different harmonics is revealed. Numerical simulation based on the Khokhlov–Zabolotskaya–Kuznetsov equation is carried out with results confirmed by experimental data.

Abstract Image

报告了研究半屏障碍物上强声束演变的物理实验的一些结果。声束是通过使用中心频率为 2 MHz 的平面压电陶瓷换能器形成的。半屏蔽障碍物安装在所用换能器声场沿声学轴线线性分布的最后一个衍射最大值之外。初始声束强度对应的声学雷诺数为 5 到 30。结果表明,障碍物后声束的演变受累积衍射和非线性效应的影响。研究表明,障碍物后声场的横向分布与入射到障碍物上的声束强度密切相关。特别是,在半屏蔽障碍物后声束横向分布中,衍射最大值的位置与入射光束的强度密切相关。在不同谐波处,横向场分布中出现了额外的极值,这种效应由此显现出来。根据 Khokhlov-Zabolotskaya-Kuznetsov 方程进行了数值模拟,结果得到了实验数据的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信