4-Methylumbelliferone, an Inhibitor of Hyaluronan Synthase, Prevents the Development of Oncological, Inflammatory, Degenerative, and Autoimmune Diseases

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Viktoriya V. Fedorova, Alexandra Tsitrina, Noreen Halimani, Yuri V. Kotelevtsev
{"title":"4-Methylumbelliferone, an Inhibitor of Hyaluronan Synthase, Prevents the Development of Oncological, Inflammatory, Degenerative, and Autoimmune Diseases","authors":"Viktoriya V. Fedorova,&nbsp;Alexandra Tsitrina,&nbsp;Noreen Halimani,&nbsp;Yuri V. Kotelevtsev","doi":"10.1134/S0006297924603459","DOIUrl":null,"url":null,"abstract":"<p>Hyaluronic acid (HA) is the main structure-forming polymer of the extracellular matrix. HA metabolism plays an important role in intercellular interaction in healthy organism and in various pathologies. HA is synthesized by hyaluronan synthase (HAS); mammals have three highly homologous isoforms of this enzyme: HAS1, HAS2, and HAS3. No highly specific competitive inhibitors of HASs have been described so far. 4-Methylumbelliferone (4-MU), a natural coumarin compound, is commonly used to inhibit HA synthesis <i>in vivo</i> and in cell cultures. The review is focused on the molecular mechanisms underlying the therapeutic effects of 4-MU and discusses results of 4-MU application in tissue cultures and animal disease models, as well as in first clinical trials of this compound. It was found that along with receptors and transcription factors, one of the pharmacological targets of 4-MU is HAS2, which is most common isoform of HAS. Moreover, it is inhibition of HA synthesis that underlies the pharmacological effects of 4-MU in oncological, autoimmune, degenerative, and hypercompensated regenerative processes (fibrosis, scar formation). New clinical drugs based on specific HAS2 inhibitors will be the first-in-class compounds to treat a wide range of diseases.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"90 1","pages":"1 - 18"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow)","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0006297924603459","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyaluronic acid (HA) is the main structure-forming polymer of the extracellular matrix. HA metabolism plays an important role in intercellular interaction in healthy organism and in various pathologies. HA is synthesized by hyaluronan synthase (HAS); mammals have three highly homologous isoforms of this enzyme: HAS1, HAS2, and HAS3. No highly specific competitive inhibitors of HASs have been described so far. 4-Methylumbelliferone (4-MU), a natural coumarin compound, is commonly used to inhibit HA synthesis in vivo and in cell cultures. The review is focused on the molecular mechanisms underlying the therapeutic effects of 4-MU and discusses results of 4-MU application in tissue cultures and animal disease models, as well as in first clinical trials of this compound. It was found that along with receptors and transcription factors, one of the pharmacological targets of 4-MU is HAS2, which is most common isoform of HAS. Moreover, it is inhibition of HA synthesis that underlies the pharmacological effects of 4-MU in oncological, autoimmune, degenerative, and hypercompensated regenerative processes (fibrosis, scar formation). New clinical drugs based on specific HAS2 inhibitors will be the first-in-class compounds to treat a wide range of diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry (Moscow)
Biochemistry (Moscow) 生物-生化与分子生物学
CiteScore
4.70
自引率
3.60%
发文量
139
审稿时长
2 months
期刊介绍: Biochemistry (Moscow) is the journal that includes research papers in all fields of biochemistry as well as biochemical aspects of molecular biology, bioorganic chemistry, microbiology, immunology, physiology, and biomedical sciences. Coverage also extends to new experimental methods in biochemistry, theoretical contributions of biochemical importance, reviews of contemporary biochemical topics, and mini-reviews (News in Biochemistry).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信