Fractal dynamics of solution moments for the KPP–Fisher equation

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
A. V. Shapovalov, S. A. Siniukov
{"title":"Fractal dynamics of solution moments for the KPP–Fisher equation","authors":"A. V. Shapovalov,&nbsp;S. A. Siniukov","doi":"10.1007/s11182-024-03319-6","DOIUrl":null,"url":null,"abstract":"<div><p>The paper focuses on the KPP–Fisher equation (named after Andrey Kolmogorov, Ivan Petrovskii, Nikolai Piskunov and Ronald Fisher) with non-local competitive losses and fractal time derivative which is considered in terms of F<sup>α</sup>-calculus on the Cantor set dimension 0 &lt; α &lt; 1. A dynamic system with the fractal time derivative relating to the moments not higher than the second-order for the KPP–Fisher equation, is deduced in the semiclassical approximation with respect to the small diffusion parameter in the class of trajectory-concentrated functions. An example is given to the dynamic system of solution moments constructed and explored for various values of α parameter.</p></div>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 11","pages":"1827 - 1837"},"PeriodicalIF":0.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03319-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper focuses on the KPP–Fisher equation (named after Andrey Kolmogorov, Ivan Petrovskii, Nikolai Piskunov and Ronald Fisher) with non-local competitive losses and fractal time derivative which is considered in terms of Fα-calculus on the Cantor set dimension 0 < α < 1. A dynamic system with the fractal time derivative relating to the moments not higher than the second-order for the KPP–Fisher equation, is deduced in the semiclassical approximation with respect to the small diffusion parameter in the class of trajectory-concentrated functions. An example is given to the dynamic system of solution moments constructed and explored for various values of α parameter.

KPP-Fisher方程解矩的分形动力学
本文主要研究具有非局部竞争损失和分形时间导数的KPP-Fisher方程(以Andrey Kolmogorov, Ivan Petrovskii, Nikolai Piskunov和Ronald Fisher命名),该方程在康托集维数0 <; α <; 1上用f α-演算来考虑。对轨迹集中函数类的小扩散参数,用半经典近似推导出了KPP-Fisher方程的分形时间导数不高于二阶矩的动力系统。给出了α参数不同取值时构造和探索的解矩动态系统的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信