{"title":"Electrical Performance and Stability Improvement of In2O3 Thin-Film Transistors Engendered by Oxygen-Free Focused Plasma Treatment","authors":"Han-Lin Zhao, Sung-Jin Kim","doi":"10.1007/s13391-024-00531-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, interest in solution-processed transparent oxide semiconductors has been increasing. Specifically, indium oxide (In<sub>2</sub>O<sub>3</sub>) films have been researched due to their processability using aqueous solutions without organic additives. However, the film quality of as-deposited layers might be suboptimal, which requires some type of post-deposition treatment. In this work, the effect of the treatment by a focused plasma (FP) under both N<sub>2</sub> (FP-N) and N<sub>2</sub>:H<sub>2</sub> (FP-H) gases on In<sub>2</sub>O<sub>3</sub> thin-film transistors (TFTs) is explored. The In<sub>2</sub>O<sub>3</sub> TFTs with optimized device performance were fabricated using a volatile nitrate precursor at an annealing temperature of 250 °C. The FP-N In<sub>2</sub>O<sub>3</sub> devices achieved saturation mobility (µ<sub>sat</sub>) of 3.83 ± 0.14 cm<sup>2</sup>/Vs, and the threshold voltage was about 3 V. The FP-H devices with a µ<sub>sat</sub> of 2.56 ± 0.15 cm<sup>2</sup>/Vs, on/off current ratio of 4.3 × 10<sup>6</sup>, exhibited stable electrical characteristics with improved gate bias stress stability and time-dependent environmental stability. These results demonstrate that FP treatment of solution processed In<sub>2</sub>O<sub>3</sub> semiconductors effectively enhances carrier transport performance and improves bias stability.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Han-Lin Zhao et al., Indium oxide semiconductors prepared based on solution-processes have many advantages, such as the ability to be prepared at low temperatures, but the performance of the prepared devices is poor. This work has shown that the performance of the devices can be improved by subjecting the devices to an oxygen-free focused plasma treatment for different gas</p></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 2","pages":"145 - 153"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00531-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decade, interest in solution-processed transparent oxide semiconductors has been increasing. Specifically, indium oxide (In2O3) films have been researched due to their processability using aqueous solutions without organic additives. However, the film quality of as-deposited layers might be suboptimal, which requires some type of post-deposition treatment. In this work, the effect of the treatment by a focused plasma (FP) under both N2 (FP-N) and N2:H2 (FP-H) gases on In2O3 thin-film transistors (TFTs) is explored. The In2O3 TFTs with optimized device performance were fabricated using a volatile nitrate precursor at an annealing temperature of 250 °C. The FP-N In2O3 devices achieved saturation mobility (µsat) of 3.83 ± 0.14 cm2/Vs, and the threshold voltage was about 3 V. The FP-H devices with a µsat of 2.56 ± 0.15 cm2/Vs, on/off current ratio of 4.3 × 106, exhibited stable electrical characteristics with improved gate bias stress stability and time-dependent environmental stability. These results demonstrate that FP treatment of solution processed In2O3 semiconductors effectively enhances carrier transport performance and improves bias stability.
Graphical Abstract
Han-Lin Zhao et al., Indium oxide semiconductors prepared based on solution-processes have many advantages, such as the ability to be prepared at low temperatures, but the performance of the prepared devices is poor. This work has shown that the performance of the devices can be improved by subjecting the devices to an oxygen-free focused plasma treatment for different gas
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.