Gauge symmetries and Hamiltonian constraints of a 2 + 1 topological string

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
I. Yu. Karataeva, S. L. Lyakhovich, I. A. Retuntsev
{"title":"Gauge symmetries and Hamiltonian constraints of a 2 + 1 topological string","authors":"I. Yu. Karataeva,&nbsp;S. L. Lyakhovich,&nbsp;I. A. Retuntsev","doi":"10.1007/s11182-024-03330-x","DOIUrl":null,"url":null,"abstract":"<div><p>We study the algebra of constraints of the recently proposed classical topological string model in three dimensions. In addition to the diffeomorphism, this model has one more gauge symmetry which comes from the existence of a differential relation between invariants of a surface. As a result, such a string has no local degrees of freedom. The global degrees of freedom of this string describe one single classical massive 3d spinning particle.</p></div>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 11","pages":"1931 - 1939"},"PeriodicalIF":0.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03330-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the algebra of constraints of the recently proposed classical topological string model in three dimensions. In addition to the diffeomorphism, this model has one more gauge symmetry which comes from the existence of a differential relation between invariants of a surface. As a result, such a string has no local degrees of freedom. The global degrees of freedom of this string describe one single classical massive 3d spinning particle.

我们研究了最近提出的三维经典拓扑弦模型的约束代数。除了衍射之外,这个模型还有一个规整对称性,它来自于曲面不变式之间存在的微分关系。因此,这种弦没有局部自由度。这个弦的全局自由度描述了一个单一的经典大质量三维旋转粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信