DRL-DCLP: A Deep Reinforcement Learning-Based Dimension-Configurable Local Planner for Robot Navigation

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Wei Zhang;Shanze Wang;Mingao Tan;Zhibo Yang;Xianghui Wang;Xiaoyu Shen
{"title":"DRL-DCLP: A Deep Reinforcement Learning-Based Dimension-Configurable Local Planner for Robot Navigation","authors":"Wei Zhang;Shanze Wang;Mingao Tan;Zhibo Yang;Xianghui Wang;Xiaoyu Shen","doi":"10.1109/LRA.2025.3544927","DOIUrl":null,"url":null,"abstract":"In this letter, we present a deep reinforcement learning-based dimension-configurable local planner (DRL-DCLP) for solving robot navigation problems. DRL-DCLP is the first neural-network local planner capable of handling rectangular differential-drive robots with varying dimension configurations without requiring post-fine-tuning. While DRL has shown excellent performance in enabling robots to navigate complex environments, it faces a significant limitation compared to conventional local planners: dimension-specificity. This constraint implies that a trained controller for a specific configuration cannot be generalized to robots with different physical dimensions, velocity ranges, or acceleration limits. To overcome this limitation, we introduce a dimension-configurable input representation and a novel learning curriculum for training the navigation agent. Extensive experiments demonstrate that DRL-DCLP facilitates successful navigation for robots with diverse dimensional configurations, achieving superior performance across various navigation tasks.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 4","pages":"3636-3643"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10900448/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we present a deep reinforcement learning-based dimension-configurable local planner (DRL-DCLP) for solving robot navigation problems. DRL-DCLP is the first neural-network local planner capable of handling rectangular differential-drive robots with varying dimension configurations without requiring post-fine-tuning. While DRL has shown excellent performance in enabling robots to navigate complex environments, it faces a significant limitation compared to conventional local planners: dimension-specificity. This constraint implies that a trained controller for a specific configuration cannot be generalized to robots with different physical dimensions, velocity ranges, or acceleration limits. To overcome this limitation, we introduce a dimension-configurable input representation and a novel learning curriculum for training the navigation agent. Extensive experiments demonstrate that DRL-DCLP facilitates successful navigation for robots with diverse dimensional configurations, achieving superior performance across various navigation tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信