Tien Nguyen;Aengus Daly;Sergi Gomez-Quintana;Feargal O'Sullivan;Andriy Temko;Emanuel Popovici
{"title":"Low-Power Real-Time Seizure Monitoring Using AI-Assisted Sonification of Neonatal EEG","authors":"Tien Nguyen;Aengus Daly;Sergi Gomez-Quintana;Feargal O'Sullivan;Andriy Temko;Emanuel Popovici","doi":"10.1109/TETC.2024.3481035","DOIUrl":null,"url":null,"abstract":"Detecting seizures in neonates requires continuous electroencephalography (EEG) monitoring, a costly process that demands trained experts. Although recent advancements in machine learning offer promising solutions for automated seizure detection, the opaque nature of these algorithms poses significant challenges to their adoption in healthcare settings. A prior study demonstrated that integrating machine learning with sonification—an interpretation method that converts bio-signals into sound—can mitigate the black-box problem while enhancing seizure detection performance. This AI-assisted sonification algorithm can provide a valuable complementary tool in seizure monitoring besides the traditional visualization method. A low-power and affordable implementation of the algorithm is presented in this study using a microcontroller. To improve its practicality, we also introduce a real-time design that allows the sonification algorithm to function in parallel with data acquisition. The system consumes 12 mW in average, making it suitable for a battery-powered device.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"13 1","pages":"80-89"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726674","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10726674/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting seizures in neonates requires continuous electroencephalography (EEG) monitoring, a costly process that demands trained experts. Although recent advancements in machine learning offer promising solutions for automated seizure detection, the opaque nature of these algorithms poses significant challenges to their adoption in healthcare settings. A prior study demonstrated that integrating machine learning with sonification—an interpretation method that converts bio-signals into sound—can mitigate the black-box problem while enhancing seizure detection performance. This AI-assisted sonification algorithm can provide a valuable complementary tool in seizure monitoring besides the traditional visualization method. A low-power and affordable implementation of the algorithm is presented in this study using a microcontroller. To improve its practicality, we also introduce a real-time design that allows the sonification algorithm to function in parallel with data acquisition. The system consumes 12 mW in average, making it suitable for a battery-powered device.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.