Eric Sturzinger;Jan Harkes;Padmanabhan Pillai;Mahadev Satyanarayanan
{"title":"Edge-Based Live Learning for Robot Survival","authors":"Eric Sturzinger;Jan Harkes;Padmanabhan Pillai;Mahadev Satyanarayanan","doi":"10.1109/TETC.2024.3479082","DOIUrl":null,"url":null,"abstract":"We introduce <italic>survival-critical machine learning (SCML),</i> in which a robot encounters dynamically evolving threats that it recognizes via machine learning (ML), and then neutralizes. We model survivability in SCML, and show the value of the recently developed approach of <italic>Live Learning.</i> This edge-based ML technique embodies an iterative human-in-the-loop workflow that concurrently enlarges the training set, trains the next model in a sequence of “best-so-far” models, and performs inferencing for both threat detection and pseudo-labeling. We present experimental results using datasets from the domains of drone surveillance, planetary exploration, and underwater sensing to quantify the effectiveness of Live Learning as a mechanism for SCML.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"13 1","pages":"34-47"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10721342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10721342/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce survival-critical machine learning (SCML), in which a robot encounters dynamically evolving threats that it recognizes via machine learning (ML), and then neutralizes. We model survivability in SCML, and show the value of the recently developed approach of Live Learning. This edge-based ML technique embodies an iterative human-in-the-loop workflow that concurrently enlarges the training set, trains the next model in a sequence of “best-so-far” models, and performs inferencing for both threat detection and pseudo-labeling. We present experimental results using datasets from the domains of drone surveillance, planetary exploration, and underwater sensing to quantify the effectiveness of Live Learning as a mechanism for SCML.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.