Adsorption and molecular transformation mechanisms of mercury sulfide on mackinawite surfaces: A DFT-D3 study

IF 5.5 Q1 ENGINEERING, CHEMICAL
Fayang Guo , Yi Zhang , Yuxiang Mao , Yinchuan Li , Shunlin Tang , Mingshi Wang , Mingfei Xing , Fengcheng Jiang , Qiaoyun Huang , Xingmin Rong
{"title":"Adsorption and molecular transformation mechanisms of mercury sulfide on mackinawite surfaces: A DFT-D3 study","authors":"Fayang Guo ,&nbsp;Yi Zhang ,&nbsp;Yuxiang Mao ,&nbsp;Yinchuan Li ,&nbsp;Shunlin Tang ,&nbsp;Mingshi Wang ,&nbsp;Mingfei Xing ,&nbsp;Fengcheng Jiang ,&nbsp;Qiaoyun Huang ,&nbsp;Xingmin Rong","doi":"10.1016/j.ceja.2025.100724","DOIUrl":null,"url":null,"abstract":"<div><div>Mackinawite (FeS), a common metallic sulfide mineral, plays a crucial role in regulating the bioavailability and mobility of mercury sulfide (HgS) in the environment. However, molecular-level insights into HgS interactions with FeS surfaces are currently limited. This study used density functional theory (DFT) to investigate HgS adsorption and transformation on FeS (001), FeS (011), and FeS (111) surfaces, including their defect surfaces. Bonding characteristics were analyzed using electron density difference, Bader charge, projected density of states (PDOS), and crystal orbital bonding index (COBI). HgS adsorption capacity on FeS surfaces is determined by surface reactivity in the order FeS (011) &gt; FeS (111) &gt; FeS (001). Additionally, S-defective FeS (001) and FeS (111) surfaces demonstrate enhanced HgS adsorption compared to Fe-defective surfaces. A potential risk of Hg release from HgS exists on FeS (001) and FeS (111) surfaces compared to FeS (011) surfaces. The dissociation of HgS molecules can be more stably adsorbed on the FeS (011) surface rather than releasing Hg. This study enriches the understanding of HgS adsorption and transformation on metal sulfides, shedding light on the microscopic cycling of HgS in soil systems.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"22 ","pages":"Article 100724"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mackinawite (FeS), a common metallic sulfide mineral, plays a crucial role in regulating the bioavailability and mobility of mercury sulfide (HgS) in the environment. However, molecular-level insights into HgS interactions with FeS surfaces are currently limited. This study used density functional theory (DFT) to investigate HgS adsorption and transformation on FeS (001), FeS (011), and FeS (111) surfaces, including their defect surfaces. Bonding characteristics were analyzed using electron density difference, Bader charge, projected density of states (PDOS), and crystal orbital bonding index (COBI). HgS adsorption capacity on FeS surfaces is determined by surface reactivity in the order FeS (011) > FeS (111) > FeS (001). Additionally, S-defective FeS (001) and FeS (111) surfaces demonstrate enhanced HgS adsorption compared to Fe-defective surfaces. A potential risk of Hg release from HgS exists on FeS (001) and FeS (111) surfaces compared to FeS (011) surfaces. The dissociation of HgS molecules can be more stably adsorbed on the FeS (011) surface rather than releasing Hg. This study enriches the understanding of HgS adsorption and transformation on metal sulfides, shedding light on the microscopic cycling of HgS in soil systems.
硫化汞在mackinawite表面的吸附和分子转化机制:DFT-D3研究
Mackinawite (FeS)是一种常见的金属硫化物矿物,在调节环境中硫化汞(HgS)的生物利用度和流动性方面起着至关重要的作用。然而,分子水平上对HgS与FeS表面相互作用的认识目前是有限的。本研究利用密度泛函理论(DFT)研究了HgS在FeS(001)、FeS(011)和FeS(111)表面及其缺陷表面的吸附和转化。利用电子密度差、Bader电荷、投影态密度(PDOS)和晶体轨道成键指数(COBI)分析了成键特性。HgS在FeS表面的吸附量由表面反应性决定,其顺序为FeS (011) >;FeS (111) >;菲斯(001)。此外,与铁缺陷表面相比,s缺陷FeS(001)和FeS(111)表面表现出更强的HgS吸附。与FeS(011)表面相比,FeS(001)和FeS(111)表面存在Hg释放的潜在风险。HgS分子的解离可以更稳定地吸附在FeS(011)表面,而不是释放Hg。本研究丰富了对HgS在金属硫化物上的吸附和转化的认识,揭示了HgS在土壤系统中的微观循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信