{"title":"Multifunctional metasurface coding for visible vortex beam generation, deflection and focusing","authors":"Run Tian, Zhixiao Zhang, Li Gao","doi":"10.1515/nanoph-2025-0016","DOIUrl":null,"url":null,"abstract":"Vortex beams, as beams carrying orbital angular momentum (OAM), exhibit unique donut-shaped intensity distributions and helical wavefronts. They are widely applied in fields such as optical communication, nanoparticle manipulation, and quantum information. Traditional vortex beam generation methods, such as those based on Pancharatnam–Berry phase design, can effectively generate vortex beams, but the conversion efficiency and design flexibility are limited by polarization states and incident angles. In addition, the generated and propagated vortex beams require separate metasurface for wavefront deflection and refocusing for practical applications. This work proposes a novel metasurface design approach based on resonant phase, where phase coverage of 2<jats:italic>π</jats:italic> is achieved by varying the radius of the nanocylinders. In addition to the efficient vortex beam generation in the visible regime, we have tackled the challenge of simultaneous control of vortex beam’s anomalous deflection and refocusing, through different encoding sequences superimposed based on the principle of Fourier convolution and metalens design. This all-in-one multifunctional metasurface design offers new technological pathways for secure optical communication and quantum manipulation applications.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"53 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Vortex beams, as beams carrying orbital angular momentum (OAM), exhibit unique donut-shaped intensity distributions and helical wavefronts. They are widely applied in fields such as optical communication, nanoparticle manipulation, and quantum information. Traditional vortex beam generation methods, such as those based on Pancharatnam–Berry phase design, can effectively generate vortex beams, but the conversion efficiency and design flexibility are limited by polarization states and incident angles. In addition, the generated and propagated vortex beams require separate metasurface for wavefront deflection and refocusing for practical applications. This work proposes a novel metasurface design approach based on resonant phase, where phase coverage of 2π is achieved by varying the radius of the nanocylinders. In addition to the efficient vortex beam generation in the visible regime, we have tackled the challenge of simultaneous control of vortex beam’s anomalous deflection and refocusing, through different encoding sequences superimposed based on the principle of Fourier convolution and metalens design. This all-in-one multifunctional metasurface design offers new technological pathways for secure optical communication and quantum manipulation applications.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.