Multifunctional metasurface coding for visible vortex beam generation, deflection and focusing

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Run Tian, Zhixiao Zhang, Li Gao
{"title":"Multifunctional metasurface coding for visible vortex beam generation, deflection and focusing","authors":"Run Tian, Zhixiao Zhang, Li Gao","doi":"10.1515/nanoph-2025-0016","DOIUrl":null,"url":null,"abstract":"Vortex beams, as beams carrying orbital angular momentum (OAM), exhibit unique donut-shaped intensity distributions and helical wavefronts. They are widely applied in fields such as optical communication, nanoparticle manipulation, and quantum information. Traditional vortex beam generation methods, such as those based on Pancharatnam–Berry phase design, can effectively generate vortex beams, but the conversion efficiency and design flexibility are limited by polarization states and incident angles. In addition, the generated and propagated vortex beams require separate metasurface for wavefront deflection and refocusing for practical applications. This work proposes a novel metasurface design approach based on resonant phase, where phase coverage of 2<jats:italic>π</jats:italic> is achieved by varying the radius of the nanocylinders. In addition to the efficient vortex beam generation in the visible regime, we have tackled the challenge of simultaneous control of vortex beam’s anomalous deflection and refocusing, through different encoding sequences superimposed based on the principle of Fourier convolution and metalens design. This all-in-one multifunctional metasurface design offers new technological pathways for secure optical communication and quantum manipulation applications.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"53 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vortex beams, as beams carrying orbital angular momentum (OAM), exhibit unique donut-shaped intensity distributions and helical wavefronts. They are widely applied in fields such as optical communication, nanoparticle manipulation, and quantum information. Traditional vortex beam generation methods, such as those based on Pancharatnam–Berry phase design, can effectively generate vortex beams, but the conversion efficiency and design flexibility are limited by polarization states and incident angles. In addition, the generated and propagated vortex beams require separate metasurface for wavefront deflection and refocusing for practical applications. This work proposes a novel metasurface design approach based on resonant phase, where phase coverage of 2π is achieved by varying the radius of the nanocylinders. In addition to the efficient vortex beam generation in the visible regime, we have tackled the challenge of simultaneous control of vortex beam’s anomalous deflection and refocusing, through different encoding sequences superimposed based on the principle of Fourier convolution and metalens design. This all-in-one multifunctional metasurface design offers new technological pathways for secure optical communication and quantum manipulation applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信