Development of disease diagnosis technology based on coattention cross-fusion of multiomics data

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Mingtao Wu , Chen Chen , Xuguang Zhou , Hao Liu , Yujia Ren , Jin Gu , Xiaoyi Lv , Cheng Chen
{"title":"Development of disease diagnosis technology based on coattention cross-fusion of multiomics data","authors":"Mingtao Wu ,&nbsp;Chen Chen ,&nbsp;Xuguang Zhou ,&nbsp;Hao Liu ,&nbsp;Yujia Ren ,&nbsp;Jin Gu ,&nbsp;Xiaoyi Lv ,&nbsp;Cheng Chen","doi":"10.1016/j.aca.2025.343919","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Early diagnosis is vital for increasing the rates of curing diseases and patient survival in medicine. With the advancement of biotechnology, the types of bioomics data are increasing. The integration of multiomics data can provide more comprehensive biological information, thereby achieving more accurate diagnoses than single-omics data can. Nevertheless, current multiomics research is often limited to the intelligent diagnosis of a single disease or a few types of omics data and lacks a multiomics disease diagnosis model that can be widely applied to different diseases. Therefore, developing a model that can effectively utilize multiomics data and accurately diagnose diseases has become an important challenge in medical research.</div></div><div><h3>Results</h3><div>On the basis of vibrational spectroscopy and metabolomics data, this study proposes an innovative coattention cross-fusion model for disease diagnosis on the basis of interactions of multiomics data. The model not only integrates the information of different omics data but also simulates the interactions between these data to achieve accurate diagnosis of diseases. Through comprehensive experiments, our method achieved accuracies of 95.00 %, 94.95 %, and 97.22 % and area under the curve (AUC) values of 95.00 %, 96.77 %, and 99.31 % on the cervical lymph node metastasis of the thyroid, systemic lupus erythematosus, and cancer datasets, respectively, indicating excellent performance in the diagnosis of multiple diseases.</div></div><div><h3>Significance</h3><div>The proposed model outperforms existing multiomics models, enhancing medical diagnostic accuracy and offering new approaches for multiomics data use in disease diagnosis. The innovative coattention cross-fusion module enables more effective multiomics data processing and analysis, serving as a potent tool for early and precise disease diagnosis with substantial clinical and research implications.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1351 ","pages":"Article 343919"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025003137","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Early diagnosis is vital for increasing the rates of curing diseases and patient survival in medicine. With the advancement of biotechnology, the types of bioomics data are increasing. The integration of multiomics data can provide more comprehensive biological information, thereby achieving more accurate diagnoses than single-omics data can. Nevertheless, current multiomics research is often limited to the intelligent diagnosis of a single disease or a few types of omics data and lacks a multiomics disease diagnosis model that can be widely applied to different diseases. Therefore, developing a model that can effectively utilize multiomics data and accurately diagnose diseases has become an important challenge in medical research.

Results

On the basis of vibrational spectroscopy and metabolomics data, this study proposes an innovative coattention cross-fusion model for disease diagnosis on the basis of interactions of multiomics data. The model not only integrates the information of different omics data but also simulates the interactions between these data to achieve accurate diagnosis of diseases. Through comprehensive experiments, our method achieved accuracies of 95.00 %, 94.95 %, and 97.22 % and area under the curve (AUC) values of 95.00 %, 96.77 %, and 99.31 % on the cervical lymph node metastasis of the thyroid, systemic lupus erythematosus, and cancer datasets, respectively, indicating excellent performance in the diagnosis of multiple diseases.

Significance

The proposed model outperforms existing multiomics models, enhancing medical diagnostic accuracy and offering new approaches for multiomics data use in disease diagnosis. The innovative coattention cross-fusion module enables more effective multiomics data processing and analysis, serving as a potent tool for early and precise disease diagnosis with substantial clinical and research implications.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信