Vapour–liquid–solid–solid growth of two-dimensional non-layered β-Bi2O3 crystals with high hole mobility

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yunhai Xiong, Duo Xu, Yousheng Zou, Lili Xu, Yujie Yan, Jianghua Wu, Chen Qian, Xiufeng Song, Kairui Qu, Tong Zhao, Jie Gao, Jialin Yang, Kai Zhang, Shengli Zhang, Peng Wang, Xiang Chen, Haibo Zeng
{"title":"Vapour–liquid–solid–solid growth of two-dimensional non-layered β-Bi2O3 crystals with high hole mobility","authors":"Yunhai Xiong, Duo Xu, Yousheng Zou, Lili Xu, Yujie Yan, Jianghua Wu, Chen Qian, Xiufeng Song, Kairui Qu, Tong Zhao, Jie Gao, Jialin Yang, Kai Zhang, Shengli Zhang, Peng Wang, Xiang Chen, Haibo Zeng","doi":"10.1038/s41563-025-02141-w","DOIUrl":null,"url":null,"abstract":"<p>Currently, p-type two-dimensional (2D) materials lag behind n-type ones in both quantity and performance, hindering their use in advanced p-channel transistors and complementary logic circuits. Non-layered materials, which make up 95% of crystal structures, hold the potential for superior p-type 2D materials but remain challenging to synthesize. Here we show a vapour–liquid–solid–solid growth of atomically thin (&lt;1 nm), high-quality, non-layered 2D β-Bi<sub>2</sub>O<sub>3</sub> crystals on a SiO<sub>2</sub>/Si substrate. These crystals form via a transformation from layered BiOCl intermediates. We further realize 2D β-Bi<sub>2</sub>O<sub>3</sub> transistors with room-temperature hole mobility and an on/off current ratio of 136.6 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and 1.2 × 10<sup>8</sup>, respectively. The p-type nature is due to the strong suborbital hybridization of Bi 6<i>s</i><sup>2</sup>6<i>p</i><sup>3</sup> with O 2<i>p</i><sup>4</sup> at the crystal’s M-point valence band maximum. Our work can be used as a reference that adds more 2D non-layered materials to the 2D toolkit and shows 2D β-Bi<sub>2</sub>O<sub>3</sub> to be promising candidate for future electronics.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"33 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02141-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, p-type two-dimensional (2D) materials lag behind n-type ones in both quantity and performance, hindering their use in advanced p-channel transistors and complementary logic circuits. Non-layered materials, which make up 95% of crystal structures, hold the potential for superior p-type 2D materials but remain challenging to synthesize. Here we show a vapour–liquid–solid–solid growth of atomically thin (<1 nm), high-quality, non-layered 2D β-Bi2O3 crystals on a SiO2/Si substrate. These crystals form via a transformation from layered BiOCl intermediates. We further realize 2D β-Bi2O3 transistors with room-temperature hole mobility and an on/off current ratio of 136.6 cm2 V−1 s−1 and 1.2 × 108, respectively. The p-type nature is due to the strong suborbital hybridization of Bi 6s26p3 with O 2p4 at the crystal’s M-point valence band maximum. Our work can be used as a reference that adds more 2D non-layered materials to the 2D toolkit and shows 2D β-Bi2O3 to be promising candidate for future electronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信