Dual Effect of Oxygen Vacancy-Enriched TiO2 Interlayer in Si Photocathode for Enhanced Photoelectrochemical CO2 Reduction to HCOOH

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-06 DOI:10.1002/smll.202502226
Jinqi Xing, Junxia Shen, Zhihe Wei, Zhangyi Zheng, Ying Cao, Cong Chen, Pierre-Yves Olu, Wen Dong, Yang Peng, Mingrong Shen, Ronglei Fan
{"title":"Dual Effect of Oxygen Vacancy-Enriched TiO2 Interlayer in Si Photocathode for Enhanced Photoelectrochemical CO2 Reduction to HCOOH","authors":"Jinqi Xing,&nbsp;Junxia Shen,&nbsp;Zhihe Wei,&nbsp;Zhangyi Zheng,&nbsp;Ying Cao,&nbsp;Cong Chen,&nbsp;Pierre-Yves Olu,&nbsp;Wen Dong,&nbsp;Yang Peng,&nbsp;Mingrong Shen,&nbsp;Ronglei Fan","doi":"10.1002/smll.202502226","DOIUrl":null,"url":null,"abstract":"<p>Integrating nanostructured catalysts with semiconductors is a prevalent strategy for the design of photoelectrochemical (PEC) photocathodes toward CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). However, it is still a challenge to achieve high efficiency and selectivity due to the incompatible catalyst/semiconductor heterogeneous interface. Here, it is proposed that engineering oxygen vacancy in the TiO<sub>2</sub> interlayer plays a multifunctional role in boosting the PEC activity and selectivity for the CO<sub>2</sub>RR on a Bi catalyst modified Si photocathode (denoted as Si/dT/Bi). It is discovered that oxygen vacancy in the TiO<sub>2</sub> interlayer accelerates the carrier transport. These oxygen vacancies also promote the growth of the Bi-based catalysts as sponge-like nanostructures during the photoelectro-deposition process. Numerous PEC experimental results combined with in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy reveal that these sponge-like Bi nano-catalysts on Si/dT/Bi photocathode provide a high density of active sites for CO<sub>2</sub> adsorption and promote the kinetics for HCOOH production by accelerating the formation of the key intermediate of *OCHO. This oxygen vacancy engineering in interlayer provides a unique route for future advancements in CO<sub>2</sub> reduction technologies.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 15","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202502226","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating nanostructured catalysts with semiconductors is a prevalent strategy for the design of photoelectrochemical (PEC) photocathodes toward CO2 reduction reaction (CO2RR). However, it is still a challenge to achieve high efficiency and selectivity due to the incompatible catalyst/semiconductor heterogeneous interface. Here, it is proposed that engineering oxygen vacancy in the TiO2 interlayer plays a multifunctional role in boosting the PEC activity and selectivity for the CO2RR on a Bi catalyst modified Si photocathode (denoted as Si/dT/Bi). It is discovered that oxygen vacancy in the TiO2 interlayer accelerates the carrier transport. These oxygen vacancies also promote the growth of the Bi-based catalysts as sponge-like nanostructures during the photoelectro-deposition process. Numerous PEC experimental results combined with in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy reveal that these sponge-like Bi nano-catalysts on Si/dT/Bi photocathode provide a high density of active sites for CO2 adsorption and promote the kinetics for HCOOH production by accelerating the formation of the key intermediate of *OCHO. This oxygen vacancy engineering in interlayer provides a unique route for future advancements in CO2 reduction technologies.

Abstract Image

Abstract Image

硅光电阴极中富氧空位TiO2中间层增强光电化学CO2还原成HCOOH的双重效应
将纳米结构催化剂与半导体相结合是设计用于CO2还原反应(CO2RR)的光电阴极的一种流行策略。然而,由于催化剂/半导体非均相界面的不相容,实现高效率和选择性仍然是一个挑战。本文提出,在Bi催化剂修饰的Si光电阴极(表示为Si/dT/Bi)上,TiO2中间层的工程氧空位在提高CO2RR的PEC活性和选择性方面发挥了多功能作用。发现TiO2中间层中的氧空位加速了载流子的输运。在光电沉积过程中,这些氧空位也促进了铋基催化剂作为海绵状纳米结构的生长。大量的PEC实验结果与原位衰减全反射表面增强红外吸收光谱相结合表明,Si/dT/Bi光电阴极上的海绵状Bi纳米催化剂为CO2吸附提供了高密度的活性位点,并通过加速*OCHO关键中间体的形成促进了HCOOH的生成动力学。这种层间氧空位工程为未来二氧化碳减排技术的发展提供了一条独特的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信