Cleanroom-Free Toolkit for Patterning Submicron-Resolution Bioelectronics on Flexibles

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-07 DOI:10.1002/smll.202411979
Xudong Tao, Alejandro Carnicer-Lombarte, Antonio Dominguez-Alfaro, Luke Gatecliff, Ji Zhang, Sophia Bidinger, Scott T. Keene, Salim El Hadwe, Chaoqun Dong, Alexander J. Boys, Christopher Slaughter, Ruben Ruiz-Mateos Serrano, Jakob Chovas, Marco Vinicio Alban-Paccha, Damiano Barone, Sohini Kar-Narayan, George G. Malliaras
{"title":"Cleanroom-Free Toolkit for Patterning Submicron-Resolution Bioelectronics on Flexibles","authors":"Xudong Tao,&nbsp;Alejandro Carnicer-Lombarte,&nbsp;Antonio Dominguez-Alfaro,&nbsp;Luke Gatecliff,&nbsp;Ji Zhang,&nbsp;Sophia Bidinger,&nbsp;Scott T. Keene,&nbsp;Salim El Hadwe,&nbsp;Chaoqun Dong,&nbsp;Alexander J. Boys,&nbsp;Christopher Slaughter,&nbsp;Ruben Ruiz-Mateos Serrano,&nbsp;Jakob Chovas,&nbsp;Marco Vinicio Alban-Paccha,&nbsp;Damiano Barone,&nbsp;Sohini Kar-Narayan,&nbsp;George G. Malliaras","doi":"10.1002/smll.202411979","DOIUrl":null,"url":null,"abstract":"<p>Fabricating flexible bioelectronics remains an ongoing challenge in pursuing a cost-effective, efficient, scalable, and environmentally friendly approach for research and commercial applications. The current dominant method, lithography, presents challenges due to its incompatibility with solvent-sensitive biomaterials and the phase mismatch between the photoresist and flexible substrates, such as elastomers. This study proposes a simplified, cleanroom-free toolkit as a potential alternative to lithography for fabricating intricate bioelectronics on flexible substrates with submicron resolution. This technique integrates a two-photon laser writing mask, mask transfer, and multi-layer/material patterning processes, enabling batch-to-batch processing and making it suitable for scalable production. With excellent conformal patterning capability, different functional and encapsulation biomaterials can be patterned on flexible substrates, including elastomers, parylene-C, polymer sheets, skin, fabric, and plant leaves. The versatility of this toolkit is validated by fabricating various prototypes of wearable and implantable bioelectronics, demonstrating excellent performance.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 14","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202411979","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411979","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fabricating flexible bioelectronics remains an ongoing challenge in pursuing a cost-effective, efficient, scalable, and environmentally friendly approach for research and commercial applications. The current dominant method, lithography, presents challenges due to its incompatibility with solvent-sensitive biomaterials and the phase mismatch between the photoresist and flexible substrates, such as elastomers. This study proposes a simplified, cleanroom-free toolkit as a potential alternative to lithography for fabricating intricate bioelectronics on flexible substrates with submicron resolution. This technique integrates a two-photon laser writing mask, mask transfer, and multi-layer/material patterning processes, enabling batch-to-batch processing and making it suitable for scalable production. With excellent conformal patterning capability, different functional and encapsulation biomaterials can be patterned on flexible substrates, including elastomers, parylene-C, polymer sheets, skin, fabric, and plant leaves. The versatility of this toolkit is validated by fabricating various prototypes of wearable and implantable bioelectronics, demonstrating excellent performance.

Abstract Image

Abstract Image

用于在柔性材料上绘制亚微米分辨率生物电子学图形的无尘室工具包
在研究和商业应用中,追求经济高效、可扩展和环保的方法,制造柔性生物电子学仍然是一个持续的挑战。目前的主流方法,光刻技术,由于其与溶剂敏感生物材料的不相容性以及光刻胶与柔性衬底(如弹性体)之间的相位不匹配而面临挑战。本研究提出了一种简化的、无洁净室的工具包,作为光刻技术的潜在替代方案,用于在亚微米分辨率的柔性基板上制造复杂的生物电子学。该技术集成了双光子激光书写掩模、掩模转移和多层/材料图图化工艺,实现了批对批处理,并适用于可扩展生产。由于具有优异的保形图图化能力,不同的功能性和封装生物材料可以在柔性基底上进行图图化,包括弹性体,聚苯乙烯- c,聚合物片,皮肤,织物和植物叶片。该工具包的多功能性通过制造各种可穿戴和可植入生物电子产品的原型得到验证,并展示了出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信