{"title":"Predicting the solvent effect on crystal morphology via quantum mechanical methods","authors":"Yongsheng Zhao, Robert Gee, Michael F. Doherty","doi":"10.1002/aic.18766","DOIUrl":null,"url":null,"abstract":"The solvent is the most important external influence on crystal morphology. Correctly interpreting solvent effects is essential to engineer the desired crystal morphology with specific properties. In this study, we propose a method based on quantum mechanical calculated gas phase interaction + Solvation Model Based on Density (SMD) calculated solvation free energy to predict the solvent-modified bond energies to predict the morphology of crystals grown from solvents. We also calculate the solvent-modified bond energy by combining molecular force fields, including the Generalized Amber Force Field and the Coulomb–London–Pauli force field (to calculate gas phase interaction) and SMD (to calculate solvation free energy). We validate these methods using mechanistic models to predict morphologies of four crystals grown from various solvents. Good agreement between the predicted crystal morphologies and the experimental results indicates the reliability of the proposed methods.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"37 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18766","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The solvent is the most important external influence on crystal morphology. Correctly interpreting solvent effects is essential to engineer the desired crystal morphology with specific properties. In this study, we propose a method based on quantum mechanical calculated gas phase interaction + Solvation Model Based on Density (SMD) calculated solvation free energy to predict the solvent-modified bond energies to predict the morphology of crystals grown from solvents. We also calculate the solvent-modified bond energy by combining molecular force fields, including the Generalized Amber Force Field and the Coulomb–London–Pauli force field (to calculate gas phase interaction) and SMD (to calculate solvation free energy). We validate these methods using mechanistic models to predict morphologies of four crystals grown from various solvents. Good agreement between the predicted crystal morphologies and the experimental results indicates the reliability of the proposed methods.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.