{"title":"Concentration distribution and mass transfer process intensification of single droplet in swirl flow field","authors":"Yuting Xu, Yun Shuai, Zhengliang Huang, Wei Li, Jingdai Wang, Yongrong Yang","doi":"10.1002/aic.18813","DOIUrl":null,"url":null,"abstract":"In the MIBK-acetic and acid-water system, the effects of swirl flow on the flow, concentration distribution, and mass transfer in a single droplet were investigated using high-speed camera, planar laser-induced fluorescence (PLIF), and particle image velocimetry (PIV) methods. The results show that swirl flow can cause forced convection in the droplet, accelerate solute diffusion to the phase interface, promote the uniform concentration distribution in the droplet, and improve the solute concentration at the phase interface. The oscillation of the swirl field makes the flow in the droplet switch between an “N”-shaped flow and a mirrored “N”-shaped flow, ensuring that the high concentration region is always on the same side as the thin boundary layer. Under the synergistic effect of high mass transfer driving force and low mass transfer resistance, the mass transfer of the droplet is significantly enhanced. Finally, the mass transfer coefficient <i>k</i><sub>L</sub> of the droplet is determined, which increases with the swirl intensity and droplet size.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"87 4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18813","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the MIBK-acetic and acid-water system, the effects of swirl flow on the flow, concentration distribution, and mass transfer in a single droplet were investigated using high-speed camera, planar laser-induced fluorescence (PLIF), and particle image velocimetry (PIV) methods. The results show that swirl flow can cause forced convection in the droplet, accelerate solute diffusion to the phase interface, promote the uniform concentration distribution in the droplet, and improve the solute concentration at the phase interface. The oscillation of the swirl field makes the flow in the droplet switch between an “N”-shaped flow and a mirrored “N”-shaped flow, ensuring that the high concentration region is always on the same side as the thin boundary layer. Under the synergistic effect of high mass transfer driving force and low mass transfer resistance, the mass transfer of the droplet is significantly enhanced. Finally, the mass transfer coefficient kL of the droplet is determined, which increases with the swirl intensity and droplet size.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.