Bias-Switchable Photomultiplication and Photovoltaic Dual-Mode Near-Infrared Organic Photodetector

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yijun Huang, Lin Shao, Yazhong Wang, Lu Hao, Xi Luo, Jie Zheng, Yunhao Cao, Shuaiqi Li, Zhaohong Tan, Shuai Li, Wenkai Zhong, Sheng Dong, Xiye Yang, Johannes Benduhn, Chunchen Liu, Karl Leo, Fei Huang
{"title":"Bias-Switchable Photomultiplication and Photovoltaic Dual-Mode Near-Infrared Organic Photodetector","authors":"Yijun Huang, Lin Shao, Yazhong Wang, Lu Hao, Xi Luo, Jie Zheng, Yunhao Cao, Shuaiqi Li, Zhaohong Tan, Shuai Li, Wenkai Zhong, Sheng Dong, Xiye Yang, Johannes Benduhn, Chunchen Liu, Karl Leo, Fei Huang","doi":"10.1002/adma.202500491","DOIUrl":null,"url":null,"abstract":"Photomultiplication-type organic photodetectors (PM-OPDs) provide for signal amplification, ideal for detecting faint light, and simplifying detection systems. However, current designs often suffer from slow response speed and elevated dark current. Conversely, photovoltaic-type organic photodetectors (PV-OPDs) provide fast response and high specific detectivity (<i>D</i><sup>*</sup>) but have limited photoresponse. This study presents the synthesis and incorporation of a non-fullerene acceptor, BFDO-4F, into the active layer to introduce trap states for capturing photogenerated electrons. The resulting device exhibits dual-mode characteristic and is bias-switchable between PV and PM-modes. In PV-mode, the OPDs achieve high <i>D</i><sup>*</sup> of 1.92 × 10¹<sup>2</sup> Jones and a response time of 2.83/4.43 µs. In PM-mode, the OPDs exhibit exceptional external quantum efficiency (EQE) up to 3484% and a <i>D</i><sup>*</sup> of up to 1.13 × 10¹<sup>2</sup> Jones. An on-chip self-powered module with PV-mode pixels driving a PM-mode pixel is demonstrated, yielding a photocurrent approximately five times higher than the reference device. This approach paves the way for developing multifunctional bias-switchable dual-mode on-chip OPDs, suitable for various applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"3 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202500491","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photomultiplication-type organic photodetectors (PM-OPDs) provide for signal amplification, ideal for detecting faint light, and simplifying detection systems. However, current designs often suffer from slow response speed and elevated dark current. Conversely, photovoltaic-type organic photodetectors (PV-OPDs) provide fast response and high specific detectivity (D*) but have limited photoresponse. This study presents the synthesis and incorporation of a non-fullerene acceptor, BFDO-4F, into the active layer to introduce trap states for capturing photogenerated electrons. The resulting device exhibits dual-mode characteristic and is bias-switchable between PV and PM-modes. In PV-mode, the OPDs achieve high D* of 1.92 × 10¹2 Jones and a response time of 2.83/4.43 µs. In PM-mode, the OPDs exhibit exceptional external quantum efficiency (EQE) up to 3484% and a D* of up to 1.13 × 10¹2 Jones. An on-chip self-powered module with PV-mode pixels driving a PM-mode pixel is demonstrated, yielding a photocurrent approximately five times higher than the reference device. This approach paves the way for developing multifunctional bias-switchable dual-mode on-chip OPDs, suitable for various applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信