Nano-confined controllable crystallization in supramolecular polymeric membranes for ultra-selective desalination

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Gang Lu, Hubao A, Yuanyuan Zhao, Yan Zhao, Hengyue Xu, Wentao Shang, Xi Chen, Jiawei Sun, Huacheng Zhang, Jun Wu, Bing Dai, Bart Van der Bruggen, Raf Dewil, Alicia Kyoungjin An, Shuang Zheng
{"title":"Nano-confined controllable crystallization in supramolecular polymeric membranes for ultra-selective desalination","authors":"Gang Lu, Hubao A, Yuanyuan Zhao, Yan Zhao, Hengyue Xu, Wentao Shang, Xi Chen, Jiawei Sun, Huacheng Zhang, Jun Wu, Bing Dai, Bart Van der Bruggen, Raf Dewil, Alicia Kyoungjin An, Shuang Zheng","doi":"10.1038/s41467-025-57353-0","DOIUrl":null,"url":null,"abstract":"<p>Innovations in self-assembly and aggregate engineering have led to membranes that better balance water permeability with salt rejection, overcoming traditional trade-offs. Here we demonstrate a strategy that uses multivalent H-bond interactions at the nano-confined space to manipulate controllable and organized crystallization. Specifically, we design amphiphilic oligomers featuring hydrophobic segments with strongly polar end-capped motifs. When spreading on air/water interfaces, the hydrophobic parts repel water, yielding an ordered alignment of supramolecular oligomers under nano-confinement, while the strongly polar sections engage in strong hydrogen bonding and reconfigure to strongly interact with water molecules, enabling the controlled assembly and orientation of nano-confined crystalline domains. This arrangement provides dual benefits: refining the distribution of pore sizes for ultra-selectivity and boosting the free volume for water permeation. Compared to counterpart oligomers with weakly polar motifs, the optimized membrane with a 6-nm thickness demonstrates the water permeability of 14.8 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> and extraordinary water/NaCl selectivity of more than 54 bar<sup>−1</sup> under pressure-driven condition. This study sheds light on how nano-confined self-assembly and aggregate engineering affect the architectures, functionality, and performance of polymer membranes, emphasizing the promise of controllable crystallization in ultrathin membranes for optimal desalination.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"19 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57353-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Innovations in self-assembly and aggregate engineering have led to membranes that better balance water permeability with salt rejection, overcoming traditional trade-offs. Here we demonstrate a strategy that uses multivalent H-bond interactions at the nano-confined space to manipulate controllable and organized crystallization. Specifically, we design amphiphilic oligomers featuring hydrophobic segments with strongly polar end-capped motifs. When spreading on air/water interfaces, the hydrophobic parts repel water, yielding an ordered alignment of supramolecular oligomers under nano-confinement, while the strongly polar sections engage in strong hydrogen bonding and reconfigure to strongly interact with water molecules, enabling the controlled assembly and orientation of nano-confined crystalline domains. This arrangement provides dual benefits: refining the distribution of pore sizes for ultra-selectivity and boosting the free volume for water permeation. Compared to counterpart oligomers with weakly polar motifs, the optimized membrane with a 6-nm thickness demonstrates the water permeability of 14.8 L m−2 h−1 bar−1 and extraordinary water/NaCl selectivity of more than 54 bar−1 under pressure-driven condition. This study sheds light on how nano-confined self-assembly and aggregate engineering affect the architectures, functionality, and performance of polymer membranes, emphasizing the promise of controllable crystallization in ultrathin membranes for optimal desalination.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信