Dual-Mode Photodetectors Mimicking Retinal Rod and Cone Cells for High Dynamic Range Image Sensor

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Shuren Zhou, Haodong Fan, Shaofeng Wen, Yiyang Wei, Haohan Chen, Yunchen Zhang, Tao Zou, Pan Gao, Dapeng Wei, Yi Yin, Changyong Lan, Chun Li, Yong Liu
{"title":"Dual-Mode Photodetectors Mimicking Retinal Rod and Cone Cells for High Dynamic Range Image Sensor","authors":"Shuren Zhou, Haodong Fan, Shaofeng Wen, Yiyang Wei, Haohan Chen, Yunchen Zhang, Tao Zou, Pan Gao, Dapeng Wei, Yi Yin, Changyong Lan, Chun Li, Yong Liu","doi":"10.1002/lpor.202402192","DOIUrl":null,"url":null,"abstract":"Capturing images with high fidelity that can discern objects in scenes across diverse lighting conditions is crucial for machine vision systems. Despite great efforts that have been adopted in conventional silicon-photodiode-based image sensors to achieve a high dynamic range (HDR), their dynamic range is still limited. Inspired by the dynamic adaptability of retinal cone/rod cells, a novel dual-mechanism bionic vision sensor based on silicon-on-insulator and graphene stacks is reported. Under reverse bias, the device functions as a cone cell in photodiode mode, while under forward bias, it transitions to photoconductor mode, mimicking the behavior of a rod cell. This robust switch between photodiode and photoconductor modes mimics the complementary versatility of cone and rod cells in diverse lighting scenarios, achieving an expansive dynamic perception range of up to 170 dB. With response times of 5 ns and 4 µs in photodiode and photoconductor modes, respectively, the device fulfills the rapid response requisites of machine vision. Furthermore, imaging fusions are demonstrated by combining mean filtering based on images captured by the detector operating at different modes. This pioneering development offers a new device architecture that elevates the performance of photodetectors in image sensors for future machine vision systems.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"11 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402192","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Capturing images with high fidelity that can discern objects in scenes across diverse lighting conditions is crucial for machine vision systems. Despite great efforts that have been adopted in conventional silicon-photodiode-based image sensors to achieve a high dynamic range (HDR), their dynamic range is still limited. Inspired by the dynamic adaptability of retinal cone/rod cells, a novel dual-mechanism bionic vision sensor based on silicon-on-insulator and graphene stacks is reported. Under reverse bias, the device functions as a cone cell in photodiode mode, while under forward bias, it transitions to photoconductor mode, mimicking the behavior of a rod cell. This robust switch between photodiode and photoconductor modes mimics the complementary versatility of cone and rod cells in diverse lighting scenarios, achieving an expansive dynamic perception range of up to 170 dB. With response times of 5 ns and 4 µs in photodiode and photoconductor modes, respectively, the device fulfills the rapid response requisites of machine vision. Furthermore, imaging fusions are demonstrated by combining mean filtering based on images captured by the detector operating at different modes. This pioneering development offers a new device architecture that elevates the performance of photodetectors in image sensors for future machine vision systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信