Local coordinates and motion of a test particle in the McVittie spacetime

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Vishal Jayswal and Sergei M Kopeikin
{"title":"Local coordinates and motion of a test particle in the McVittie spacetime","authors":"Vishal Jayswal and Sergei M Kopeikin","doi":"10.1088/1361-6382/adb7b4","DOIUrl":null,"url":null,"abstract":"We consider the orbital motion of a test particle in the gravitational field of a massive body (that might be a black hole) with mass placed on the expanding cosmological manifold described by the McVittie metric. We introduce the local coordinates attached to the massive body to eliminate nonphysical, coordinates-dependent effects associated with Hubble expansion. The resultant equation of motion of the test particle are analyzed by the method of osculating elements with application of time-averaging technique. We demonstrate that the orbit of the test particle is not subject to the cosmological expansion up to the terms of the second order in the Hubble parameter. However, the cosmological expansion causes the precession of the orbit of the test particle with time and changes the frequency of the mean orbital motion. We show that the direction of motion of the orbital precession depends on the Hubble parameter as well as the deceleration parameter of the Universe. We give numeric estimates for the rate of the orbital precession with respect to time due to the cosmological expansion in case of several astrophysical systems.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"17 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adb7b4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the orbital motion of a test particle in the gravitational field of a massive body (that might be a black hole) with mass placed on the expanding cosmological manifold described by the McVittie metric. We introduce the local coordinates attached to the massive body to eliminate nonphysical, coordinates-dependent effects associated with Hubble expansion. The resultant equation of motion of the test particle are analyzed by the method of osculating elements with application of time-averaging technique. We demonstrate that the orbit of the test particle is not subject to the cosmological expansion up to the terms of the second order in the Hubble parameter. However, the cosmological expansion causes the precession of the orbit of the test particle with time and changes the frequency of the mean orbital motion. We show that the direction of motion of the orbital precession depends on the Hubble parameter as well as the deceleration parameter of the Universe. We give numeric estimates for the rate of the orbital precession with respect to time due to the cosmological expansion in case of several astrophysical systems.
McVittie时空中测试粒子的局部坐标和运动
我们考虑一个测试粒子在一个大质量物体(可能是一个黑洞)的引力场中的轨道运动,该物体的质量位于麦克维蒂度规描述的膨胀的宇宙流形上。我们引入了附着在大质量物体上的局部坐标,以消除与哈勃膨胀相关的非物理的、依赖坐标的影响。应用时间平均技术,用模拟元法分析了试验颗粒的运动方程。我们证明了测试粒子的轨道不受宇宙膨胀的影响,直到哈勃参数的二阶项。然而,宇宙膨胀导致测试粒子的轨道随时间进动,并改变平均轨道运动的频率。我们证明了轨道进动的运动方向取决于哈勃参数以及宇宙的减速参数。在几种天体物理系统的情况下,我们给出了由于宇宙膨胀引起的轨道进动随时间的速率的数值估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信