Dynamics of Saltwater Intrusion Into Coastal Freshwaters in the California Central Coast

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Lauren N. Kim, Casey Meusel, Rusty Barker, Brian Lockwood, Mark Strudley, Dane Behrens, Mara M. Orescanin, Mark Merrifield, Sarah N. Giddings, Morgan C. Levy
{"title":"Dynamics of Saltwater Intrusion Into Coastal Freshwaters in the California Central Coast","authors":"Lauren N. Kim, Casey Meusel, Rusty Barker, Brian Lockwood, Mark Strudley, Dane Behrens, Mara M. Orescanin, Mark Merrifield, Sarah N. Giddings, Morgan C. Levy","doi":"10.1029/2024wr037141","DOIUrl":null,"url":null,"abstract":"Saltwater intrusion (SWI) into coastal freshwater systems is a growing concern in the face of climate change-driven sea level rise and hydrologic variability. Saltwater contamination of surface freshwater in the coastal California Pajaro Valley exemplifies this concern, where surface water cannot be diverted for agriculture if it is too saline. Closures at the mouth of the Pajaro River Lagoon, a bar-built estuary in the Pajaro Valley, are associated with SWI. Closures and SWI are driven by a combination of offshore climate, coastal hydrodynamics, estuarine dynamics, inland hydrology, and infrastructure and management. Here, we describe the Pajaro Valley coastal water system and identify the oceanic and inland hydrologic drivers of SWI using available observational data between 2012 and 2020. We use time series and exploratory statistical analyses of coastal total water levels (TWLs), slough stage and salinity, river discharge, and contextual knowledge from local water managers. We observe that wet season lagoon closure and SWI events follow high oceanic TWLs coupled with low stage and discharge in the inland freshwater network, revealing how both wave and inland flow conditions govern lagoon closures and coincident SWI. This study yields novel empirical findings and a methodology for connecting coastal oceanography, estuarine coupled hydro- and morpho-dynamics, inland hydrology, and water management practices relevant to climate change adaptation in human-modified coastal water systems.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"49 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037141","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Saltwater intrusion (SWI) into coastal freshwater systems is a growing concern in the face of climate change-driven sea level rise and hydrologic variability. Saltwater contamination of surface freshwater in the coastal California Pajaro Valley exemplifies this concern, where surface water cannot be diverted for agriculture if it is too saline. Closures at the mouth of the Pajaro River Lagoon, a bar-built estuary in the Pajaro Valley, are associated with SWI. Closures and SWI are driven by a combination of offshore climate, coastal hydrodynamics, estuarine dynamics, inland hydrology, and infrastructure and management. Here, we describe the Pajaro Valley coastal water system and identify the oceanic and inland hydrologic drivers of SWI using available observational data between 2012 and 2020. We use time series and exploratory statistical analyses of coastal total water levels (TWLs), slough stage and salinity, river discharge, and contextual knowledge from local water managers. We observe that wet season lagoon closure and SWI events follow high oceanic TWLs coupled with low stage and discharge in the inland freshwater network, revealing how both wave and inland flow conditions govern lagoon closures and coincident SWI. This study yields novel empirical findings and a methodology for connecting coastal oceanography, estuarine coupled hydro- and morpho-dynamics, inland hydrology, and water management practices relevant to climate change adaptation in human-modified coastal water systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信