{"title":"Thermodynamic effects of chloride's type and dosage on phase composition of magnesium oxysulfate cement and its impact on macro-properties","authors":"Tong Li , Yuhao Zheng , Huisu Chen , Tingting Zhang , Rongling Zhang","doi":"10.1016/j.cemconcomp.2025.106032","DOIUrl":null,"url":null,"abstract":"<div><div>As magnesium oxysulfate cement (MOS) finds more applications in salt lakes and marine environments, the interaction between Cl<sup>−</sup> and MOS has gained more attention. Nevertheless, a scarcity of previous studies has investigated the effects of chloride type and dosage on the phase composition of hardened MOS paste. This study creates a newly extended and internally consistent thermodynamic database to systematically explore the impacts of four chloride salts (NaCl, KCl, MgCl<sub>2</sub>, and CaCl<sub>2</sub>) on the phase assemblage of MOS at various chloride dosages, including chloride impurities (0–0.125 g/(100g MOS)), chloride attack (0–0.25 mol/(100g MOS)), and high-volume MgCl<sub>2</sub> (>0.05 mol/(100g MOS)). The predicted phase assemblages via thermodynamic modeling are validated using the experimental phase assemblages characterized by XRD from both the literature and our experiments. The gel-space ratio is used to bridge the relationship between phase composition and the compressive strength of samples. The feasibility of this correlation is confirmed by compressive strength from both the literature and our experiments.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106032"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525001143","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As magnesium oxysulfate cement (MOS) finds more applications in salt lakes and marine environments, the interaction between Cl− and MOS has gained more attention. Nevertheless, a scarcity of previous studies has investigated the effects of chloride type and dosage on the phase composition of hardened MOS paste. This study creates a newly extended and internally consistent thermodynamic database to systematically explore the impacts of four chloride salts (NaCl, KCl, MgCl2, and CaCl2) on the phase assemblage of MOS at various chloride dosages, including chloride impurities (0–0.125 g/(100g MOS)), chloride attack (0–0.25 mol/(100g MOS)), and high-volume MgCl2 (>0.05 mol/(100g MOS)). The predicted phase assemblages via thermodynamic modeling are validated using the experimental phase assemblages characterized by XRD from both the literature and our experiments. The gel-space ratio is used to bridge the relationship between phase composition and the compressive strength of samples. The feasibility of this correlation is confirmed by compressive strength from both the literature and our experiments.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.