Knowledge-guided diffusion model for 3D ligand-pharmacophore mapping

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jun-Lin Yu, Cong Zhou, Xiang-Li Ning, Jun Mou, Fan-Bo Meng, Jing-Wei Wu, Yi-Ting Chen, Biao-Dan Tang, Xiang-Gen Liu, Guo-Bo Li
{"title":"Knowledge-guided diffusion model for 3D ligand-pharmacophore mapping","authors":"Jun-Lin Yu, Cong Zhou, Xiang-Li Ning, Jun Mou, Fan-Bo Meng, Jing-Wei Wu, Yi-Ting Chen, Biao-Dan Tang, Xiang-Gen Liu, Guo-Bo Li","doi":"10.1038/s41467-025-57485-3","DOIUrl":null,"url":null,"abstract":"<p>Pharmacophores are abstractions of essential chemical interaction patterns, holding an irreplaceable position in drug discovery. Despite the availability of many pharmacophore tools, the adoption of deep learning for pharmacophore-guided drug discovery remains relatively rare. We herein propose a knowledge-guided diffusion framework for ‘on-the-fly’ 3D ligand-pharmacophore mapping, named DiffPhore. It leverages ligand-pharmacophore matching knowledge to guide ligand conformation generation, meanwhile utilizing calibrated sampling to mitigate the exposure bias of the iterative conformation search process. By training on two self-established datasets of 3D ligand-pharmacophore pairs, DiffPhore achieves state-of-the-art performance in predicting ligand binding conformations, surpassing traditional pharmacophore tools and several advanced docking methods. It also manifests superior virtual screening power for lead discovery and target fishing. Using DiffPhore, we successfully identify structurally distinct inhibitors for human glutaminyl cyclases, and their binding modes are further validated through co-crystallographic analysis. We believe this work will advance the AI-enabled pharmacophore-guided drug discovery techniques.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"30 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57485-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pharmacophores are abstractions of essential chemical interaction patterns, holding an irreplaceable position in drug discovery. Despite the availability of many pharmacophore tools, the adoption of deep learning for pharmacophore-guided drug discovery remains relatively rare. We herein propose a knowledge-guided diffusion framework for ‘on-the-fly’ 3D ligand-pharmacophore mapping, named DiffPhore. It leverages ligand-pharmacophore matching knowledge to guide ligand conformation generation, meanwhile utilizing calibrated sampling to mitigate the exposure bias of the iterative conformation search process. By training on two self-established datasets of 3D ligand-pharmacophore pairs, DiffPhore achieves state-of-the-art performance in predicting ligand binding conformations, surpassing traditional pharmacophore tools and several advanced docking methods. It also manifests superior virtual screening power for lead discovery and target fishing. Using DiffPhore, we successfully identify structurally distinct inhibitors for human glutaminyl cyclases, and their binding modes are further validated through co-crystallographic analysis. We believe this work will advance the AI-enabled pharmacophore-guided drug discovery techniques.

Abstract Image

三维配体-药效团映射的知识引导扩散模型
药效团是基本化学相互作用模式的抽象,在药物发现中具有不可替代的地位。尽管有许多药效团工具可用,但采用深度学习进行药效团引导的药物发现仍然相对罕见。在此,我们提出了一个知识引导的扩散框架,用于“实时”三维配体-药效团映射,名为DiffPhore。它利用配体-药效团匹配知识来指导配体构象的生成,同时利用校准采样来减轻迭代构象搜索过程的暴露偏差。通过对两个自建的三维配体-药效团对数据集进行训练,DiffPhore在预测配体结合构象方面达到了最先进的性能,超越了传统的药效团工具和一些先进的对接方法。它还表现出优越的虚拟筛选能力,用于铅发现和目标捕捞。使用DiffPhore,我们成功地鉴定了结构上不同的人类谷氨酰环化酶抑制剂,并通过共晶分析进一步验证了它们的结合模式。我们相信这项工作将推动人工智能药物团引导的药物发现技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信