The Repurposing of Nitazoxanide for Psoriasis Treatment Exerts Therapeutic Effects through Skin Metabolic Reprogramming.

Jong Yeong Lee, Ha Eun Kim, Seung Taek Lee, Jin Park, Kyung-Hwa Nam, Jun-Young Park, Jin Kyeong Choi
{"title":"The Repurposing of Nitazoxanide for Psoriasis Treatment Exerts Therapeutic Effects through Skin Metabolic Reprogramming.","authors":"Jong Yeong Lee, Ha Eun Kim, Seung Taek Lee, Jin Park, Kyung-Hwa Nam, Jun-Young Park, Jin Kyeong Choi","doi":"10.1016/j.jid.2025.02.137","DOIUrl":null,"url":null,"abstract":"<p><p>Nitazoxanide (NTZ), a Food and Drug Administration-approved drug, was originally developed for the treatment of parasitic infections. Recent studies have revealed that NTZ may also be effective in treating other diseases, including inflammatory diseases, cancer, and bacterial and viral infections. Therefore, we investigated whether NTZ could inhibit specific inflammatory pathways and reprogram metabolic processes in psoriasis to regulate inflammation. To investigate the symptom-alleviating effects of NTZ on psoriasis and its underlying mechanisms, we used an imiquimod-induced psoriatic-like skin inflammation mouse model and IL-17-stimulated human keratinocytes. NTZ inhibited the transition of metabolic programs induced by IL-17-mediated inflammation in human keratinocytes. In particular, NTZ suppressed glucose uptake and the associated actions stimulated by IL-17 and reduced enhanced oxidative phosphorylation. NTZ inhibited the mTOR signaling pathway by inducing AMP-activated protein kinase and prevented the development of dysfunctional mitochondria characterized by high mitochondrial mass and high levels of ROS. Moreover, the administration of NTZ in a mouse model of psoriasis, an IL-17-mediated skin disease, inhibited the accumulation of damaged mitochondria and suppressed T helper 17-mediated inflammatory responses. These findings provide preclinical evidence that NTZ may be effective in treating psoriasis and suggest that targeting the energy metabolic pathways in the skin could be beneficial for the treatment and prevention of psoriasis.</p>","PeriodicalId":94239,"journal":{"name":"The Journal of investigative dermatology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of investigative dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jid.2025.02.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nitazoxanide (NTZ), a Food and Drug Administration-approved drug, was originally developed for the treatment of parasitic infections. Recent studies have revealed that NTZ may also be effective in treating other diseases, including inflammatory diseases, cancer, and bacterial and viral infections. Therefore, we investigated whether NTZ could inhibit specific inflammatory pathways and reprogram metabolic processes in psoriasis to regulate inflammation. To investigate the symptom-alleviating effects of NTZ on psoriasis and its underlying mechanisms, we used an imiquimod-induced psoriatic-like skin inflammation mouse model and IL-17-stimulated human keratinocytes. NTZ inhibited the transition of metabolic programs induced by IL-17-mediated inflammation in human keratinocytes. In particular, NTZ suppressed glucose uptake and the associated actions stimulated by IL-17 and reduced enhanced oxidative phosphorylation. NTZ inhibited the mTOR signaling pathway by inducing AMP-activated protein kinase and prevented the development of dysfunctional mitochondria characterized by high mitochondrial mass and high levels of ROS. Moreover, the administration of NTZ in a mouse model of psoriasis, an IL-17-mediated skin disease, inhibited the accumulation of damaged mitochondria and suppressed T helper 17-mediated inflammatory responses. These findings provide preclinical evidence that NTZ may be effective in treating psoriasis and suggest that targeting the energy metabolic pathways in the skin could be beneficial for the treatment and prevention of psoriasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信