Less is more: selection from a small set of options improves BCI velocity control.

Pedro I Alcolea, Xuan Ma, Kevin Bodkin, Lee E Miller, Zachary C Danziger
{"title":"Less is more: selection from a small set of options improves BCI velocity control.","authors":"Pedro I Alcolea, Xuan Ma, Kevin Bodkin, Lee E Miller, Zachary C Danziger","doi":"10.1088/1741-2552/adbcd9","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Decoding algorithms used in invasive brain-computer interfaces (iBCIs) typically convert neural activity into continuously varying velocity commands. We hypothesized that putting constraints on which decoded velocity commands are permissible could improve user performance. To test this hypothesis, we designed the discrete direction selection (DDS) decoder, which uses neural activity to select among a small menu of preset cursor velocities.<i>Approach</i>. We tested DDS in a closed-loop cursor control task against many common continuous velocity decoders in both a human-operated real-time iBCI simulator (the jaBCI) and in a monkey using an iBCI. In the jaBCI, we compared performance across four visits by each of 48 naïve, able-bodied human subjects using either DDS, direct regression with assist (an affine map from neural activity to cursor velocity, DR-A), ReFIT, or the velocity Kalman Filter (vKF). In a follow up study to verify the jaBCI results, we compared a monkey's performance using an iBCI with either DDS or the Wiener filter decoder (a direct regression decoder that includes time history, WF).<i>Main Result</i>. In the jaBCI, DDS substantially outperformed all other decoders with 93% mean targets hit per visit compared to DR-A, ReFIT, and vKF with 56%, 39%, and 26% mean targets hit, respectively. With the iBCI, the monkey achieved a 61% success rate with DDS and a 37% success rate with WF.<i>Significance</i>. Discretizing the decoded velocity with DDS effectively traded high resolution velocity commands for less tortuous and lower noise trajectories, highlighting the potential benefits of discretization in simplifying online BCI control.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adbcd9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Decoding algorithms used in invasive brain-computer interfaces (iBCIs) typically convert neural activity into continuously varying velocity commands. We hypothesized that putting constraints on which decoded velocity commands are permissible could improve user performance. To test this hypothesis, we designed the discrete direction selection (DDS) decoder, which uses neural activity to select among a small menu of preset cursor velocities.Approach. We tested DDS in a closed-loop cursor control task against many common continuous velocity decoders in both a human-operated real-time iBCI simulator (the jaBCI) and in a monkey using an iBCI. In the jaBCI, we compared performance across four visits by each of 48 naïve, able-bodied human subjects using either DDS, direct regression with assist (an affine map from neural activity to cursor velocity, DR-A), ReFIT, or the velocity Kalman Filter (vKF). In a follow up study to verify the jaBCI results, we compared a monkey's performance using an iBCI with either DDS or the Wiener filter decoder (a direct regression decoder that includes time history, WF).Main Result. In the jaBCI, DDS substantially outperformed all other decoders with 93% mean targets hit per visit compared to DR-A, ReFIT, and vKF with 56%, 39%, and 26% mean targets hit, respectively. With the iBCI, the monkey achieved a 61% success rate with DDS and a 37% success rate with WF.Significance. Discretizing the decoded velocity with DDS effectively traded high resolution velocity commands for less tortuous and lower noise trajectories, highlighting the potential benefits of discretization in simplifying online BCI control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信