How well do contextual protein encodings learn structure, function, and evolutionary context?

Cell systems Pub Date : 2025-03-19 Epub Date: 2025-03-04 DOI:10.1016/j.cels.2025.101201
Sai Pooja Mahajan, Fátima A Dávila-Hernández, Jeffrey A Ruffolo, Jeffrey J Gray
{"title":"How well do contextual protein encodings learn structure, function, and evolutionary context?","authors":"Sai Pooja Mahajan, Fátima A Dávila-Hernández, Jeffrey A Ruffolo, Jeffrey J Gray","doi":"10.1016/j.cels.2025.101201","DOIUrl":null,"url":null,"abstract":"<p><p>In proteins, the optimal residue at any position is determined by its structural, evolutionary, and functional contexts-much like how a word may be inferred from its context in language. We trained masked label prediction models to learn representations of amino acid residues in different contexts. We focus questions on evolution and structural flexibility and whether and how contextual encodings derived through pretraining and fine-tuning may improve representations for specialized contexts. Sequences sampled from our learned representations fold into template structure and reflect sequence variations seen in related proteins. For flexible proteins, sampled sequences traverse the full conformational space of the native sequence, suggesting that plasticity is encoded in the template structure. For protein-protein interfaces, generated sequences replicate wild-type binding energies across diverse interfaces and binding strengths in silico. For the antibody-antigen interface, fine-tuning recapitulate conserved sequence patterns, while pretraining on general contexts improves sequence recovery for the hypervariable H3 loop. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101201"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In proteins, the optimal residue at any position is determined by its structural, evolutionary, and functional contexts-much like how a word may be inferred from its context in language. We trained masked label prediction models to learn representations of amino acid residues in different contexts. We focus questions on evolution and structural flexibility and whether and how contextual encodings derived through pretraining and fine-tuning may improve representations for specialized contexts. Sequences sampled from our learned representations fold into template structure and reflect sequence variations seen in related proteins. For flexible proteins, sampled sequences traverse the full conformational space of the native sequence, suggesting that plasticity is encoded in the template structure. For protein-protein interfaces, generated sequences replicate wild-type binding energies across diverse interfaces and binding strengths in silico. For the antibody-antigen interface, fine-tuning recapitulate conserved sequence patterns, while pretraining on general contexts improves sequence recovery for the hypervariable H3 loop. A record of this paper's transparent peer review process is included in the supplemental information.

背景蛋白编码如何学习结构、功能和进化背景?
在蛋白质中,任何位置的最佳残基都是由它的结构、进化和功能环境决定的——就像语言中的单词是如何从语境中推断出来的一样。我们训练了屏蔽标签预测模型来学习不同背景下氨基酸残基的表示。我们关注的问题是进化和结构灵活性,以及通过预训练和微调衍生的上下文编码是否以及如何改善专门上下文的表示。从我们的学习表征中采样的序列折叠成模板结构,并反映相关蛋白质中看到的序列变化。对于柔性蛋白,采样序列遍历原生序列的整个构象空间,表明可塑性是在模板结构中编码的。对于蛋白质-蛋白质界面,生成的序列在硅中复制了不同界面和结合强度的野生型结合能。对于抗体-抗原界面,微调重述保守的序列模式,而在一般情况下的预训练提高了高变量H3环的序列恢复。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信