Tao Liu, Jixiang Li, Bin Zhou, Yong Hao, Xianfeng Wang
{"title":"Distributed observer-based prescribed-time affine formation control for underactuated unmanned surface vessels under DoS attack.","authors":"Tao Liu, Jixiang Li, Bin Zhou, Yong Hao, Xianfeng Wang","doi":"10.1016/j.isatra.2025.02.017","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the control challenges of distributed prescribed-time maneuvers for underactuated unmanned surface vessels (USVs) operating in affine formation under adverse conditions, including ocean disturbances, unmodeled dynamics, and denial-of-service (DoS) attacks. The research develops a control scheme that enables USVs to perform complex maneuvers such as translation, shearing, rotation, and scaling, despite intermittent communication failures due to periodic DoS attacks. The approach integrates a distributed prescribed-time observer (DPTO) for each vessel to monitor local time-varying desired states, coupled with an adaptive prescribed-time local tracking control (APTLTC) strategy that drives the USV to track the desired states. The effectiveness and robustness of this control solution are validated through theoretical analysis and simulation, demonstrating significant resilience against network disruptions. This study contributes to safer maritime operations by providing a robust control framework for underactuated USVs under cyber-physical threats.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.02.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the control challenges of distributed prescribed-time maneuvers for underactuated unmanned surface vessels (USVs) operating in affine formation under adverse conditions, including ocean disturbances, unmodeled dynamics, and denial-of-service (DoS) attacks. The research develops a control scheme that enables USVs to perform complex maneuvers such as translation, shearing, rotation, and scaling, despite intermittent communication failures due to periodic DoS attacks. The approach integrates a distributed prescribed-time observer (DPTO) for each vessel to monitor local time-varying desired states, coupled with an adaptive prescribed-time local tracking control (APTLTC) strategy that drives the USV to track the desired states. The effectiveness and robustness of this control solution are validated through theoretical analysis and simulation, demonstrating significant resilience against network disruptions. This study contributes to safer maritime operations by providing a robust control framework for underactuated USVs under cyber-physical threats.