Additive manufacturing of a 3D-segmented plastic scintillator detector for tracking and calorimetry of elementary particles.

Tim Weber, Andrey Boyarintsev, Umut Kose, Botao Li, Davide Sgalaberna, Tetiana Sibilieva, Johannes Wüthrich, Siddartha Berns, Eric Boillat, Albert De Roeck, Till Dieminger, Matthew Franks, Boris Grynyov, Sylvain Hugon, Carsten Jaeschke, André Rubbia
{"title":"Additive manufacturing of a 3D-segmented plastic scintillator detector for tracking and calorimetry of elementary particles.","authors":"Tim Weber, Andrey Boyarintsev, Umut Kose, Botao Li, Davide Sgalaberna, Tetiana Sibilieva, Johannes Wüthrich, Siddartha Berns, Eric Boillat, Albert De Roeck, Till Dieminger, Matthew Franks, Boris Grynyov, Sylvain Hugon, Carsten Jaeschke, André Rubbia","doi":"10.1038/s44172-025-00371-z","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic scintillators, segmented into small, optically isolated voxels, are used for detecting elementary particles and provide reliable particle identification with nanosecond time resolution. Building large detectors requires the production and precise alignment of millions of individual units, a process that is time-consuming, cost-intensive, and difficult to scale. Here, we introduce an additive manufacturing process chain capable of producing plastic-based scintillator detectors as a single, monolithic structure. Unlike previous manufacturing methods, this approach consolidates all production steps within one machine, creating a detector that integrates and precisely aligns its voxels into a unified structure. By combining fused deposition modeling with an injection process optimized for fabricating scintillation geometries, we produced an additively manufactured fine-granularity plastic scintillator detector with performance comparable to the state of the art, and demonstrated its capabilities for 3D tracking of elementary particles and energy-loss measurement. This work presents an efficient and economical production process for manufacturing plastic-based scintillator detectors, adaptable to various sizes and geometries.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"41"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00371-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic scintillators, segmented into small, optically isolated voxels, are used for detecting elementary particles and provide reliable particle identification with nanosecond time resolution. Building large detectors requires the production and precise alignment of millions of individual units, a process that is time-consuming, cost-intensive, and difficult to scale. Here, we introduce an additive manufacturing process chain capable of producing plastic-based scintillator detectors as a single, monolithic structure. Unlike previous manufacturing methods, this approach consolidates all production steps within one machine, creating a detector that integrates and precisely aligns its voxels into a unified structure. By combining fused deposition modeling with an injection process optimized for fabricating scintillation geometries, we produced an additively manufactured fine-granularity plastic scintillator detector with performance comparable to the state of the art, and demonstrated its capabilities for 3D tracking of elementary particles and energy-loss measurement. This work presents an efficient and economical production process for manufacturing plastic-based scintillator detectors, adaptable to various sizes and geometries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信