Emilio M García-Tenorio, Mar Álvarez, Mónica Gallego-Bonhomme, Lourdes R Desviat, Eva Richard
{"title":"Novel CRISPR-Cas9 iPSC knockouts for PCCA and PCCB genes: advancing propionic acidemia research.","authors":"Emilio M García-Tenorio, Mar Álvarez, Mónica Gallego-Bonhomme, Lourdes R Desviat, Eva Richard","doi":"10.1007/s13577-025-01193-z","DOIUrl":null,"url":null,"abstract":"<p><p>Propionic acidemia (PA) is a rare autosomal recessive metabolic disorder caused by mutations in the PCCA and PCCB genes, which encode subunits of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). This enzyme deficiency leads to the accumulation of toxic metabolites, resulting in severe metabolic dysfunction. To create ideal in vitro disease models of PA with isogenic controls and provide a robust platform for therapeutic research, we generated two induced pluripotent stem cell (iPSC) lines with knockout (KO) mutations in the PCCA and PCCB genes using CRISPR-Cas9 gene editing in a healthy control iPSC line. The KO iPS cells were successfully established and characterized, confirming the presence of frameshift insertions and deletions in each target gene, as well as the loss of the corresponding transcript, protein expression, and activity. Additionally, the generated iPSC lines exhibit hallmark characteristics of pluripotency, including the potential to differentiate into all three germ layers. Our PCCA and PCCB KO iPSC models provide a valuable tool for studying the molecular mechanisms underlying PA and hold potential for advancing new therapeutic approaches.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 3","pages":"64"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01193-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Propionic acidemia (PA) is a rare autosomal recessive metabolic disorder caused by mutations in the PCCA and PCCB genes, which encode subunits of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). This enzyme deficiency leads to the accumulation of toxic metabolites, resulting in severe metabolic dysfunction. To create ideal in vitro disease models of PA with isogenic controls and provide a robust platform for therapeutic research, we generated two induced pluripotent stem cell (iPSC) lines with knockout (KO) mutations in the PCCA and PCCB genes using CRISPR-Cas9 gene editing in a healthy control iPSC line. The KO iPS cells were successfully established and characterized, confirming the presence of frameshift insertions and deletions in each target gene, as well as the loss of the corresponding transcript, protein expression, and activity. Additionally, the generated iPSC lines exhibit hallmark characteristics of pluripotency, including the potential to differentiate into all three germ layers. Our PCCA and PCCB KO iPSC models provide a valuable tool for studying the molecular mechanisms underlying PA and hold potential for advancing new therapeutic approaches.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.