Development and validation of a novel suspended particulate matter sampling device for analysis of particle-bound microbial communities.

IF 2.6 4区 生物学 Q3 MICROBIOLOGY
Fuad J Shatara, Kiyoko Yokota, Justin Peschman, Azul J Kothari, Jacob Schoville, Liyuan Hou, R Preston Withington Iv, Cole F Beale, Maria Pelusi, Kyle M Boldon, Jennifer Withington, R P Withington Iii, Hannah Nicklay, Michael R Twiss, Charles J Paradis, Erica L-W Majumder
{"title":"Development and validation of a novel suspended particulate matter sampling device for analysis of particle-bound microbial communities.","authors":"Fuad J Shatara, Kiyoko Yokota, Justin Peschman, Azul J Kothari, Jacob Schoville, Liyuan Hou, R Preston Withington Iv, Cole F Beale, Maria Pelusi, Kyle M Boldon, Jennifer Withington, R P Withington Iii, Hannah Nicklay, Michael R Twiss, Charles J Paradis, Erica L-W Majumder","doi":"10.1099/mic.0.001538","DOIUrl":null,"url":null,"abstract":"<p><p>Biotic and abiotic materials attachment to suspended particulate matter in aquatic systems can increase their toxicity and health impacts and has led to an increased need for consistent sampling across various compartments. Sedimentation traps and continuous flow centrifuges are the traditional tools for sampling suspended particulate matter, while manta trawls have been widely used for surface water sampling of suspended or floating microplastics. Limitations, however, exist in the cost of sampling and infrastructure needed to deploy such devices. Here we report on the construction and usage of a novel suspended particulate matter sampling device, the microParticle Obtaining Trap (mPOT). Quality control testing of the mPOT showed suspended particle recovery rates of >90% for particles 100 µm and larger, while field sampling of groundwater, lake and river water shows consistent, size-fractionated recovery of particulate matter. The mPOT is well suited to sample systems not easily accessible by boat or for particles not commonly recovered by common suspended particulate matter sampling and for collection of particles smaller than 300 µm in size.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001538","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biotic and abiotic materials attachment to suspended particulate matter in aquatic systems can increase their toxicity and health impacts and has led to an increased need for consistent sampling across various compartments. Sedimentation traps and continuous flow centrifuges are the traditional tools for sampling suspended particulate matter, while manta trawls have been widely used for surface water sampling of suspended or floating microplastics. Limitations, however, exist in the cost of sampling and infrastructure needed to deploy such devices. Here we report on the construction and usage of a novel suspended particulate matter sampling device, the microParticle Obtaining Trap (mPOT). Quality control testing of the mPOT showed suspended particle recovery rates of >90% for particles 100 µm and larger, while field sampling of groundwater, lake and river water shows consistent, size-fractionated recovery of particulate matter. The mPOT is well suited to sample systems not easily accessible by boat or for particles not commonly recovered by common suspended particulate matter sampling and for collection of particles smaller than 300 µm in size.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信