Global residual stress field inference method for die-forging structural parts based on fusion of monitoring data and distribution prior.

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shuyuan Chen, Yingguang Li, Changqing Liu, Zhiwei Zhao, Zhibin Chen, Xiao Liu
{"title":"Global residual stress field inference method for die-forging structural parts based on fusion of monitoring data and distribution prior.","authors":"Shuyuan Chen, Yingguang Li, Changqing Liu, Zhiwei Zhao, Zhibin Chen, Xiao Liu","doi":"10.1186/s42492-025-00187-w","DOIUrl":null,"url":null,"abstract":"<p><p>Die-forging structural parts are widely used in the main load-bearing components of aircrafts because of their excellent mechanical properties and fatigue resistance. However, the forming and heat treatment processes of die-forging structural parts are complex, leading to high levels of internal stress and a complex distribution of residual stress fields (RSFs), which affect the deformation, fatigue life, and failure of structural parts throughout their lifecycles. Hence, the global RSF can provide the basis for process control. The existing RSF inference method based on deformation force data can utilize monitoring data to infer the global RSF of a regular part. However, owing to the irregular geometry of die-forging structural parts and the complexity of the RSF, it is challenging to solve ill-conditioned problems during the inference process, which makes it difficult to obtain the RSF accurately. This paper presents a global RSF inference method for the die-forging structural parts based on the fusion of monitoring data and distribution prior. Prior knowledge was derived from the RSF distribution trends obtained through finite element analysis. This enables the low-dimensional characterization of the RSF, reducing the number of parameters required to solve the equations. The effectiveness of this method was validated in both simulation and actual environments.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"4"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00187-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Die-forging structural parts are widely used in the main load-bearing components of aircrafts because of their excellent mechanical properties and fatigue resistance. However, the forming and heat treatment processes of die-forging structural parts are complex, leading to high levels of internal stress and a complex distribution of residual stress fields (RSFs), which affect the deformation, fatigue life, and failure of structural parts throughout their lifecycles. Hence, the global RSF can provide the basis for process control. The existing RSF inference method based on deformation force data can utilize monitoring data to infer the global RSF of a regular part. However, owing to the irregular geometry of die-forging structural parts and the complexity of the RSF, it is challenging to solve ill-conditioned problems during the inference process, which makes it difficult to obtain the RSF accurately. This paper presents a global RSF inference method for the die-forging structural parts based on the fusion of monitoring data and distribution prior. Prior knowledge was derived from the RSF distribution trends obtained through finite element analysis. This enables the low-dimensional characterization of the RSF, reducing the number of parameters required to solve the equations. The effectiveness of this method was validated in both simulation and actual environments.

基于监测数据融合和分布先验的模锻结构件整体残余应力场推断方法。
模锻结构件因其优异的力学性能和抗疲劳性能而广泛应用于飞机的主要承重部件。然而,模锻结构件的成形和热处理过程复杂,导致内部应力水平高,残余应力场(rsf)分布复杂,影响结构件整个生命周期的变形、疲劳寿命和失效。因此,全局RSF可以为过程控制提供基础。现有的基于变形力数据的RSF推断方法可以利用监测数据推断出规则零件的全局RSF。然而,由于模锻结构件的几何形状不规则,且RSF的复杂性,在推理过程中很难求解病态问题,从而难以准确地获得RSF。本文提出了一种基于监测数据和分布先验融合的模锻结构件全局RSF推理方法。先验知识来源于有限元分析得到的RSF分布趋势。这使得RSF的低维特征,减少了求解方程所需的参数数量。在仿真和实际环境中验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信