{"title":"Global residual stress field inference method for die-forging structural parts based on fusion of monitoring data and distribution prior.","authors":"Shuyuan Chen, Yingguang Li, Changqing Liu, Zhiwei Zhao, Zhibin Chen, Xiao Liu","doi":"10.1186/s42492-025-00187-w","DOIUrl":null,"url":null,"abstract":"<p><p>Die-forging structural parts are widely used in the main load-bearing components of aircrafts because of their excellent mechanical properties and fatigue resistance. However, the forming and heat treatment processes of die-forging structural parts are complex, leading to high levels of internal stress and a complex distribution of residual stress fields (RSFs), which affect the deformation, fatigue life, and failure of structural parts throughout their lifecycles. Hence, the global RSF can provide the basis for process control. The existing RSF inference method based on deformation force data can utilize monitoring data to infer the global RSF of a regular part. However, owing to the irregular geometry of die-forging structural parts and the complexity of the RSF, it is challenging to solve ill-conditioned problems during the inference process, which makes it difficult to obtain the RSF accurately. This paper presents a global RSF inference method for the die-forging structural parts based on the fusion of monitoring data and distribution prior. Prior knowledge was derived from the RSF distribution trends obtained through finite element analysis. This enables the low-dimensional characterization of the RSF, reducing the number of parameters required to solve the equations. The effectiveness of this method was validated in both simulation and actual environments.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"4"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00187-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Die-forging structural parts are widely used in the main load-bearing components of aircrafts because of their excellent mechanical properties and fatigue resistance. However, the forming and heat treatment processes of die-forging structural parts are complex, leading to high levels of internal stress and a complex distribution of residual stress fields (RSFs), which affect the deformation, fatigue life, and failure of structural parts throughout their lifecycles. Hence, the global RSF can provide the basis for process control. The existing RSF inference method based on deformation force data can utilize monitoring data to infer the global RSF of a regular part. However, owing to the irregular geometry of die-forging structural parts and the complexity of the RSF, it is challenging to solve ill-conditioned problems during the inference process, which makes it difficult to obtain the RSF accurately. This paper presents a global RSF inference method for the die-forging structural parts based on the fusion of monitoring data and distribution prior. Prior knowledge was derived from the RSF distribution trends obtained through finite element analysis. This enables the low-dimensional characterization of the RSF, reducing the number of parameters required to solve the equations. The effectiveness of this method was validated in both simulation and actual environments.