The ecology and geography of temnospondyl recovery after the Permian-Triassic mass extinction.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-03-05 eCollection Date: 2025-03-01 DOI:10.1098/rsos.241200
Aamir Mehmood, Suresh A Singh, Armin Elsler, Michael J Benton
{"title":"The ecology and geography of temnospondyl recovery after the Permian-Triassic mass extinction.","authors":"Aamir Mehmood, Suresh A Singh, Armin Elsler, Michael J Benton","doi":"10.1098/rsos.241200","DOIUrl":null,"url":null,"abstract":"<p><p>One of the mysteries of the Permian-Triassic mass extinction was the subsequent success of temnospondyls. Temnospondyls were key early tetrapods in the Carboniferous and Permian and hardly seem to be ideal pioneers in a tough post-extinction world. Did they survive because of some unusual adaptations or by occupying some limited part of the world? We explore temnospondyl success in the Triassic by comparing their functional ecomorphology and palaeogeographic distributions. We find that Early Triassic temnospondyls exhibited all skull sizes and shapes, reflecting a wide diversity of feeding modes: abundant parabolic-snouted forms, and less common longirostrine (long-snouted) and insectivorous (short-skulled) forms. In fact, morphospace occupation by temnospondyls increased dramatically from Late Permian to Early Triassic, and then decreased in the Middle Triassic, but without emphasis on one feeding mode or another. Nor is there any evidence for unusual patterns of evolution: Temnospondyli and subclade Trematosauria follow an Ornstein-Uhlenbeck evolutionary model, suggesting evolution towards a common skull shape. Metoposauroidea, Brachyopoidea and basal Stereospondyli evolved by the stasis model. Further, these Early Triassic temnospondyls did not occupy a limited part of the world; they show temperate distributions, but with some specimens in equatorial regions, contradicting the idea of a permanently impermeable tropical dead zone.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 3","pages":"241200"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241200","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

One of the mysteries of the Permian-Triassic mass extinction was the subsequent success of temnospondyls. Temnospondyls were key early tetrapods in the Carboniferous and Permian and hardly seem to be ideal pioneers in a tough post-extinction world. Did they survive because of some unusual adaptations or by occupying some limited part of the world? We explore temnospondyl success in the Triassic by comparing their functional ecomorphology and palaeogeographic distributions. We find that Early Triassic temnospondyls exhibited all skull sizes and shapes, reflecting a wide diversity of feeding modes: abundant parabolic-snouted forms, and less common longirostrine (long-snouted) and insectivorous (short-skulled) forms. In fact, morphospace occupation by temnospondyls increased dramatically from Late Permian to Early Triassic, and then decreased in the Middle Triassic, but without emphasis on one feeding mode or another. Nor is there any evidence for unusual patterns of evolution: Temnospondyli and subclade Trematosauria follow an Ornstein-Uhlenbeck evolutionary model, suggesting evolution towards a common skull shape. Metoposauroidea, Brachyopoidea and basal Stereospondyli evolved by the stasis model. Further, these Early Triassic temnospondyls did not occupy a limited part of the world; they show temperate distributions, but with some specimens in equatorial regions, contradicting the idea of a permanently impermeable tropical dead zone.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信