Scalable acoustic virtual stirrer for enhanced interfacial enzymatic nucleic acid reactions.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-03-07 Epub Date: 2025-03-05 DOI:10.1126/sciadv.adt6955
Dayang Li, Kunjie Li, Jianquan Li, Dongfang Li, Heng Chen, Sen-Sen Li, Chaoyong Yang, Huimin Zhang, Lu-Jian Chen, Xuejia Hu
{"title":"Scalable acoustic virtual stirrer for enhanced interfacial enzymatic nucleic acid reactions.","authors":"Dayang Li, Kunjie Li, Jianquan Li, Dongfang Li, Heng Chen, Sen-Sen Li, Chaoyong Yang, Huimin Zhang, Lu-Jian Chen, Xuejia Hu","doi":"10.1126/sciadv.adt6955","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymatic nucleic acid reaction is a fundamental tool in molecular biology. However, high-complexity enzymatic DNA reactions and assays are still challenging due to the difficulties in integrating and scaling up microscale reaction units and mixing tools. Here, we present scalable acoustofluidic platform featuring acoustic virtual stirrer (AVS) arrays, serving as stirrers to increase the efficiency of interfacial enzymatic nucleic acid reactions. Analogous to magnetic stirrers, AVS arrays perturb the fluid through oscillating pressure nodes, controllable in terms of speeds and amplitudes via modulation. By optimizing the kinetics of surface-tethered DNA and enzymes via AVS, we achieve a 7.74% improvement in the stepwise yield of enzymatic DNA synthesis. In addition, the AVS enhanced DNA logic gate architecture can complete responses within 2 minutes, achieving average speed enhancement of 8.58 times compared to the non-AVS configuration. With its tunability, ease of integration, and efficiency, this technology holds promises for applications in biology and chemistry.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 10","pages":"eadt6955"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adt6955","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymatic nucleic acid reaction is a fundamental tool in molecular biology. However, high-complexity enzymatic DNA reactions and assays are still challenging due to the difficulties in integrating and scaling up microscale reaction units and mixing tools. Here, we present scalable acoustofluidic platform featuring acoustic virtual stirrer (AVS) arrays, serving as stirrers to increase the efficiency of interfacial enzymatic nucleic acid reactions. Analogous to magnetic stirrers, AVS arrays perturb the fluid through oscillating pressure nodes, controllable in terms of speeds and amplitudes via modulation. By optimizing the kinetics of surface-tethered DNA and enzymes via AVS, we achieve a 7.74% improvement in the stepwise yield of enzymatic DNA synthesis. In addition, the AVS enhanced DNA logic gate architecture can complete responses within 2 minutes, achieving average speed enhancement of 8.58 times compared to the non-AVS configuration. With its tunability, ease of integration, and efficiency, this technology holds promises for applications in biology and chemistry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信