Immunomodulatory role of the stem cell circadian clock in muscle repair.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-03-07 Epub Date: 2025-03-05 DOI:10.1126/sciadv.adq8538
Pei Zhu, Eric M Pfrender, Adam W T Steffeck, Colleen R Reczek, Yalu Zhou, Abhishek Vijay Thakkar, Neha R Gupta, Ariana Kupai, Amber Willbanks, Richard L Lieber, Ishan Roy, Navdeep S Chandel, Clara B Peek
{"title":"Immunomodulatory role of the stem cell circadian clock in muscle repair.","authors":"Pei Zhu, Eric M Pfrender, Adam W T Steffeck, Colleen R Reczek, Yalu Zhou, Abhishek Vijay Thakkar, Neha R Gupta, Ariana Kupai, Amber Willbanks, Richard L Lieber, Ishan Roy, Navdeep S Chandel, Clara B Peek","doi":"10.1126/sciadv.adq8538","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythms orchestrate physiological processes such as metabolism, immune function, and tissue regeneration, aligning them with the optimal time of day (TOD). This study identifies an interplay between the circadian clock within muscle stem cells (SCs) and their capacity to modulate the immune microenvironment during muscle regeneration. We reveal that the SC clock triggers TOD-dependent inflammatory gene transcription after injury, particularly genes related to neutrophil activity and chemotaxis. These responses are driven by cytosolic regeneration of the signaling metabolite nicotinamide adenine dinucleotide (oxidized form) (NAD<sup>+</sup>), as enhancing cytosolic NAD<sup>+</sup> regeneration in SCs is sufficient to induce inflammatory responses that influence muscle regeneration. Mononuclear single-cell sequencing of the regenerating muscle niche further implicates the cytokine CCL2 in mediating SC-neutrophil cross-talk in a TOD-dependent manner. Our findings highlight the intersection between SC metabolic shifts and immune responses within the muscle microenvironment, dictated by circadian rhythms, and underscore the potential for targeting circadian and metabolic pathways to enhance tissue regeneration.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 10","pages":"eadq8538"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq8538","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Circadian rhythms orchestrate physiological processes such as metabolism, immune function, and tissue regeneration, aligning them with the optimal time of day (TOD). This study identifies an interplay between the circadian clock within muscle stem cells (SCs) and their capacity to modulate the immune microenvironment during muscle regeneration. We reveal that the SC clock triggers TOD-dependent inflammatory gene transcription after injury, particularly genes related to neutrophil activity and chemotaxis. These responses are driven by cytosolic regeneration of the signaling metabolite nicotinamide adenine dinucleotide (oxidized form) (NAD+), as enhancing cytosolic NAD+ regeneration in SCs is sufficient to induce inflammatory responses that influence muscle regeneration. Mononuclear single-cell sequencing of the regenerating muscle niche further implicates the cytokine CCL2 in mediating SC-neutrophil cross-talk in a TOD-dependent manner. Our findings highlight the intersection between SC metabolic shifts and immune responses within the muscle microenvironment, dictated by circadian rhythms, and underscore the potential for targeting circadian and metabolic pathways to enhance tissue regeneration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信