{"title":"Discovery of antimicrobial peptides with notable antibacterial potency by an LLM-based foundation model.","authors":"Jike Wang, Jianwen Feng, Yu Kang, Peichen Pan, Jingxuan Ge, Yan Wang, Mingyang Wang, Zhenxing Wu, Xingcai Zhang, Jiameng Yu, Xujun Zhang, Tianyue Wang, Lirong Wen, Guangning Yan, Yafeng Deng, Hui Shi, Chang-Yu Hsieh, Zhihui Jiang, Tingjun Hou","doi":"10.1126/sciadv.ads8932","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) have shown remarkable advancements in chemistry and biomedical research, acting as versatile foundation models for various tasks. We introduce AMP-Designer, an LLM-based approach, for swiftly designing antimicrobial peptides (AMPs) with desired properties. Within 11 days, AMP-Designer achieved the de novo design of 18 AMPs with broad-spectrum activity against Gram-negative bacteria. In vitro validation revealed a 94.4% success rate, with two candidates demonstrating exceptional antibacterial efficacy, minimal hemotoxicity, stability in human plasma, and low potential to induce resistance, as evidenced by significant bacterial load reduction in murine lung infection experiments. The entire process, from design to validation, concluded in 48 days. AMP-Designer excels in creating AMPs targeting specific strains despite limited data availability, with a top candidate displaying a minimum inhibitory concentration of 2.0 micrograms per milliliter against <i>Propionibacterium acnes</i>. Integrating advanced machine learning techniques, AMP-Designer demonstrates remarkable efficiency, paving the way for innovative solutions to antibiotic resistance.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 10","pages":"eads8932"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads8932","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) have shown remarkable advancements in chemistry and biomedical research, acting as versatile foundation models for various tasks. We introduce AMP-Designer, an LLM-based approach, for swiftly designing antimicrobial peptides (AMPs) with desired properties. Within 11 days, AMP-Designer achieved the de novo design of 18 AMPs with broad-spectrum activity against Gram-negative bacteria. In vitro validation revealed a 94.4% success rate, with two candidates demonstrating exceptional antibacterial efficacy, minimal hemotoxicity, stability in human plasma, and low potential to induce resistance, as evidenced by significant bacterial load reduction in murine lung infection experiments. The entire process, from design to validation, concluded in 48 days. AMP-Designer excels in creating AMPs targeting specific strains despite limited data availability, with a top candidate displaying a minimum inhibitory concentration of 2.0 micrograms per milliliter against Propionibacterium acnes. Integrating advanced machine learning techniques, AMP-Designer demonstrates remarkable efficiency, paving the way for innovative solutions to antibiotic resistance.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.