Comparative analyses of chloroplast genomes of Theobroma cacao from northern Peru.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-03-05 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0316148
Daniel Tineo, Danilo E Bustamante, Martha S Calderon, Manuel Oliva
{"title":"Comparative analyses of chloroplast genomes of Theobroma cacao from northern Peru.","authors":"Daniel Tineo, Danilo E Bustamante, Martha S Calderon, Manuel Oliva","doi":"10.1371/journal.pone.0316148","DOIUrl":null,"url":null,"abstract":"<p><p>Theobroma cacao is the most economically important species within the genus Theobroma. Despite its importance, the intraspecific relationships of this species has not been fully elucidated due to insufficient molecular information. To facilitate a better understanding of the intraspecific evolutionary relationships of T. cacao, Sequencing technology has been to decode the plastid genomes, with the objective of identify potential DNA barcode genetic markers, explore intraspecific relationships, and infer divergence times. The plastid genome of the seven cocoa genotypes analyzed in this study, exhibited a typical angiosperm genomic structure. However, the structure of each plastid genome reflects notable changes in each genotype; for example, the infA gene was present in all the analyzed samples, unlike in previously published cocoa plastid genomes, while the complete ycf1 gene sequence has potential for use as DNA Barcoding in T. cacao. The estimated age of the node connecting T. cacao and T. grandiflorum, which was 10.11 Ma, supports this indication. It can be inferred that T. cacao diverged at approximately 7.55 Ma, and it is highly likely that T. cacao populations diversified during the Pliocene or Miocene. Therefore, it is crucial to perform mitochondrial and nuclear-based analyses on a broader spectrum of cocoa samples to validate these evolutionary mechanisms, including genetic estimates and divergence. This approach enables a deeper understanding of the evolutionary relationships among cocoa.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0316148"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882073/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0316148","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Theobroma cacao is the most economically important species within the genus Theobroma. Despite its importance, the intraspecific relationships of this species has not been fully elucidated due to insufficient molecular information. To facilitate a better understanding of the intraspecific evolutionary relationships of T. cacao, Sequencing technology has been to decode the plastid genomes, with the objective of identify potential DNA barcode genetic markers, explore intraspecific relationships, and infer divergence times. The plastid genome of the seven cocoa genotypes analyzed in this study, exhibited a typical angiosperm genomic structure. However, the structure of each plastid genome reflects notable changes in each genotype; for example, the infA gene was present in all the analyzed samples, unlike in previously published cocoa plastid genomes, while the complete ycf1 gene sequence has potential for use as DNA Barcoding in T. cacao. The estimated age of the node connecting T. cacao and T. grandiflorum, which was 10.11 Ma, supports this indication. It can be inferred that T. cacao diverged at approximately 7.55 Ma, and it is highly likely that T. cacao populations diversified during the Pliocene or Miocene. Therefore, it is crucial to perform mitochondrial and nuclear-based analyses on a broader spectrum of cocoa samples to validate these evolutionary mechanisms, including genetic estimates and divergence. This approach enables a deeper understanding of the evolutionary relationships among cocoa.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信