Morphofunctional characteristics of flight-related traits in deltamethrin-resistant and susceptible Triatoma infestans (Klug, 1834) of the Argentinean Chaco.

IF 3 2区 医学 Q1 PARASITOLOGY
Víctor A Maza, M Victoria Cardinal, Julieta Nattero
{"title":"Morphofunctional characteristics of flight-related traits in deltamethrin-resistant and susceptible Triatoma infestans (Klug, 1834) of the Argentinean Chaco.","authors":"Víctor A Maza, M Victoria Cardinal, Julieta Nattero","doi":"10.1186/s13071-025-06678-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chagas disease, transmitted by triatomine bugs, is a major vector-borne parasitic disease in Latin America. Triatoma infestans, the principal vector in the Southern Cone, is primarily controlled through residual insecticide spraying. However, resistance to pyrethroids, especially in Northern Argentina and Southern Bolivia, has emerged. Resistant T. infestans populations exhibit reduced fitness, including impacts on reproductive success and dispersal capacity. This study investigates the flight potential and morphological changes in T. infestans populations with varying levels of insecticide resistance, hypothesizing that resistance may induce morphological changes in wing and head structures related to dispersal.</p><p><strong>Methods: </strong>We analyzed three resistance profiles of T. infestans-susceptible (S), moderately resistant (MR), and highly resistant (HR)-collected from ten domestic or peridomestic sites in two municipalities from Chaco province, Argentina. We registered flight muscle development and measured flight-related traits (wings, heads, and the stiff and membranous portions of the wing) using a landmark-based methodology. We also assessed morphological disparity and covariation of these traits across toxicological groups.</p><p><strong>Results: </strong>Significant morphological differences were found between resistant and susceptible populations. The frequency of insects with and without muscle varied across toxicological groups only for females, exhibiting the highest proportion of HR insects with fight muscle (86.21%). MR and HR males exhibited smaller stiff portions of the wing and heads than S males. Shape variation analysis showed that S females had wider forewings than resistant females, while HR females had narrower wings with a wider stiff portion. Susceptible males had wider and longer wings compared with resistant groups. Additionally, resistant populations showed greater morphological disparity and reduced covariation between flight-related traits.</p><p><strong>Conclusions: </strong>Our study shows that pyrethroid resistance in T. infestans is linked to morphological changes in flight-related traits. These changes suggest a tradeoff between resistance and flight capacity, with energy allocated to resistance mechanisms potentially limiting flight. The reduced covariation between flight traits in resistant individuals supports the idea of pleiotropic effects. While resistant individuals may perform better in insecticide treated areas, their reduced flight capacity could limit long-distance dispersal, affecting population dynamics and vector control efforts.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"92"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06678-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chagas disease, transmitted by triatomine bugs, is a major vector-borne parasitic disease in Latin America. Triatoma infestans, the principal vector in the Southern Cone, is primarily controlled through residual insecticide spraying. However, resistance to pyrethroids, especially in Northern Argentina and Southern Bolivia, has emerged. Resistant T. infestans populations exhibit reduced fitness, including impacts on reproductive success and dispersal capacity. This study investigates the flight potential and morphological changes in T. infestans populations with varying levels of insecticide resistance, hypothesizing that resistance may induce morphological changes in wing and head structures related to dispersal.

Methods: We analyzed three resistance profiles of T. infestans-susceptible (S), moderately resistant (MR), and highly resistant (HR)-collected from ten domestic or peridomestic sites in two municipalities from Chaco province, Argentina. We registered flight muscle development and measured flight-related traits (wings, heads, and the stiff and membranous portions of the wing) using a landmark-based methodology. We also assessed morphological disparity and covariation of these traits across toxicological groups.

Results: Significant morphological differences were found between resistant and susceptible populations. The frequency of insects with and without muscle varied across toxicological groups only for females, exhibiting the highest proportion of HR insects with fight muscle (86.21%). MR and HR males exhibited smaller stiff portions of the wing and heads than S males. Shape variation analysis showed that S females had wider forewings than resistant females, while HR females had narrower wings with a wider stiff portion. Susceptible males had wider and longer wings compared with resistant groups. Additionally, resistant populations showed greater morphological disparity and reduced covariation between flight-related traits.

Conclusions: Our study shows that pyrethroid resistance in T. infestans is linked to morphological changes in flight-related traits. These changes suggest a tradeoff between resistance and flight capacity, with energy allocated to resistance mechanisms potentially limiting flight. The reduced covariation between flight traits in resistant individuals supports the idea of pleiotropic effects. While resistant individuals may perform better in insecticide treated areas, their reduced flight capacity could limit long-distance dispersal, affecting population dynamics and vector control efforts.

阿根廷查科地区对溴氰菊酯耐药和敏感的斑蝽的飞行相关性状的形态功能特征。
背景:恰加斯病是拉丁美洲主要的媒介传播寄生虫病,由锥蝽虫传播。南锥体的主要病媒——斑鼻虫,主要通过残留杀虫剂喷洒加以控制。然而,对拟除虫菊酯的抗药性已经出现,特别是在阿根廷北部和玻利维亚南部。耐药的感染弓形虫种群表现出较低的适应性,包括对繁殖成功和传播能力的影响。本研究研究了不同杀虫剂抗性水平的侵染弓形虫种群的飞行潜力和形态变化,假设抗性可能导致与扩散有关的翅膀和头部结构的形态变化。方法:对阿根廷查科省2个城市10个家庭或周边站点采集的3种耐药菌株进行分析,分别为易感、中等耐药和高度耐药。我们使用基于地标的方法记录飞行肌肉发育并测量飞行相关特征(翅膀,头部以及翅膀的僵硬和膜状部分)。我们还评估了这些性状在毒理学组中的形态差异和共变异。结果:抗性种群与易感种群形态差异显著。有肌和无肌昆虫的出现频率在毒理组中存在差异,仅雌性有肌的HR昆虫比例最高(86.21%)。MR和HR雄性的翅膀和头部的僵硬部分比S雄性小。形态变异分析表明,S型雌鸟前翼较抗性雌鸟宽,而HR型雌鸟前翼较窄,刚性部分较宽。与抗性组相比,易感雄性的翅膀更宽更长。此外,抗性种群表现出更大的形态差异和较少的飞行相关性状之间的共变异。结论:本研究表明,拟除虫菊酯类抗性与飞行相关性状的形态学变化有关。这些变化表明了阻力和飞行能力之间的权衡,分配给阻力机制的能量可能会限制飞行。抗性个体飞行性状间协变的减少支持了多效性效应的观点。虽然抗性个体在杀虫剂处理地区可能表现更好,但它们飞行能力的降低可能限制远距离传播,影响种群动态和病媒控制工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Parasites & Vectors
Parasites & Vectors 医学-寄生虫学
CiteScore
6.30
自引率
9.40%
发文量
433
审稿时长
1.4 months
期刊介绍: Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish. Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信