The compound XueShuanTong promotes podocyte mitochondrial autophagy via the AMPK/mTOR pathway to alleviate diabetic nephropathy injury

IF 3.9 3区 生物学 Q2 CELL BIOLOGY
Chuangbiao Zhang , Weiwei Ren , Xiaohua Lu , Lie Feng , Jiaying Li , Beibei Zhu
{"title":"The compound XueShuanTong promotes podocyte mitochondrial autophagy via the AMPK/mTOR pathway to alleviate diabetic nephropathy injury","authors":"Chuangbiao Zhang ,&nbsp;Weiwei Ren ,&nbsp;Xiaohua Lu ,&nbsp;Lie Feng ,&nbsp;Jiaying Li ,&nbsp;Beibei Zhu","doi":"10.1016/j.mito.2025.102024","DOIUrl":null,"url":null,"abstract":"<div><div>The study aimed to elucidate the molecular mechanisms underlying the protective effects of Compound Xueshuantong (CXst) in the context of diabetic nephropathy (DN), a major cause of kidney failure driven by podocyte injury and metabolic dysfunction. Given the critical role of the AMPK/mTOR signaling pathway in regulating cellular energy balance, autophagy, and mitochondrial health, we focused on its involvement in podocyte function and how it might be influenced by CXst. Through a series of experiments, we found that CXst treatment led to the upregulation of key proteins involved in autophagy, such as LC3 and p62, as well as proteins critical for mitochondrial function, like PGC-1α. These molecular changes helped to counteract the damaging effects of high glucose levels on podocytes, which are central to maintaining the filtration function of the kidneys. Additionally, CXst’s ability to modulate the AMPK/mTOR pathway was shown to be a pivotal factor in its protective effects, as inhibition of AMPK significantly reduced these benefits. This comprehensive study provides strong evidence that CXst exerts its protective effects against DN by modulating the AMPK/mTOR pathway, thus preserving podocyte integrity and function. These findings suggest that CXst could be a promising candidate for the development of new therapeutic strategies for the treatment of DN, offering hope for better management of this challenging condition.</div></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"83 ","pages":"Article 102024"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724925000212","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to elucidate the molecular mechanisms underlying the protective effects of Compound Xueshuantong (CXst) in the context of diabetic nephropathy (DN), a major cause of kidney failure driven by podocyte injury and metabolic dysfunction. Given the critical role of the AMPK/mTOR signaling pathway in regulating cellular energy balance, autophagy, and mitochondrial health, we focused on its involvement in podocyte function and how it might be influenced by CXst. Through a series of experiments, we found that CXst treatment led to the upregulation of key proteins involved in autophagy, such as LC3 and p62, as well as proteins critical for mitochondrial function, like PGC-1α. These molecular changes helped to counteract the damaging effects of high glucose levels on podocytes, which are central to maintaining the filtration function of the kidneys. Additionally, CXst’s ability to modulate the AMPK/mTOR pathway was shown to be a pivotal factor in its protective effects, as inhibition of AMPK significantly reduced these benefits. This comprehensive study provides strong evidence that CXst exerts its protective effects against DN by modulating the AMPK/mTOR pathway, thus preserving podocyte integrity and function. These findings suggest that CXst could be a promising candidate for the development of new therapeutic strategies for the treatment of DN, offering hope for better management of this challenging condition.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mitochondrion
Mitochondrion 生物-细胞生物学
CiteScore
9.40
自引率
4.50%
发文量
86
审稿时长
13.6 weeks
期刊介绍: Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信