Ruihong Xiong, Xuankai Xu, Yushuai Liu, Shihao Du, Lihui Jin, Fang Chen, Tao Wu
{"title":"A miniaturized MEMS accelerometer with anti-spring mechanism for enhancing sensitivity.","authors":"Ruihong Xiong, Xuankai Xu, Yushuai Liu, Shihao Du, Lihui Jin, Fang Chen, Tao Wu","doi":"10.1038/s41378-024-00826-x","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-spring mechanisms are widely used for improving the noise performance of MEMS accelerometers due to their stiffness softening effect. However, the existing mechanisms typically require large bias force and displacement for achieving stiffness softening, leading to large device dimensions. Here, we propose a novel anti-spring mechanism composed of two pre-shaped curved beams connected in a parallel configuration, which can achieve stiffness softening without requiring large bias force and displacement. The stiffness softening effect of the mechanism is verified through theoretical modeling and finite element method (FEM) simulation. After that, the mechanism is implemented in a 4.2 mm × 4.9 mm MEMS capacitive accelerometer prototype. The experimental results reveal that the sensitivity of the accelerometer increases by 10.4% compared to the initial sensitivity; at the same time, the noise floor and bias instability decrease by 10.5% and 4.2%. The sensitivity, nonlinearity, bias instability, and noise floor after biasing are 51.1 mV/g, 0.99%, 0.24 mg, and 21.3 <math><mrow><mi>μ</mi> <mi>g</mi> <mo>/</mo> <msqrt><mrow><mi>Hz</mi></mrow> </msqrt> </mrow> </math> , respectively. Thus, the proposed mechanism can enhance the performance of the accelerometer. This work provides an innovative approach for improving the performance of MEMS accelerometers while enabling miniaturization.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"42"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883025/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00826-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Anti-spring mechanisms are widely used for improving the noise performance of MEMS accelerometers due to their stiffness softening effect. However, the existing mechanisms typically require large bias force and displacement for achieving stiffness softening, leading to large device dimensions. Here, we propose a novel anti-spring mechanism composed of two pre-shaped curved beams connected in a parallel configuration, which can achieve stiffness softening without requiring large bias force and displacement. The stiffness softening effect of the mechanism is verified through theoretical modeling and finite element method (FEM) simulation. After that, the mechanism is implemented in a 4.2 mm × 4.9 mm MEMS capacitive accelerometer prototype. The experimental results reveal that the sensitivity of the accelerometer increases by 10.4% compared to the initial sensitivity; at the same time, the noise floor and bias instability decrease by 10.5% and 4.2%. The sensitivity, nonlinearity, bias instability, and noise floor after biasing are 51.1 mV/g, 0.99%, 0.24 mg, and 21.3 , respectively. Thus, the proposed mechanism can enhance the performance of the accelerometer. This work provides an innovative approach for improving the performance of MEMS accelerometers while enabling miniaturization.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.