Study of clopidogrel and clonidine interactions for cardiovascular formulations: progress from DFT modeling.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
B Ocampo Cárdenas, G Román, E Noseda Grau, S Simonetti
{"title":"Study of clopidogrel and clonidine interactions for cardiovascular formulations: progress from DFT modeling.","authors":"B Ocampo Cárdenas, G Román, E Noseda Grau, S Simonetti","doi":"10.1039/d4na00776j","DOIUrl":null,"url":null,"abstract":"<p><p>The drugs clopidogrel and clonidine are frequently used to treat cardiovascular diseases, which are the leading cause of mortality worldwide. Since these medications are frequently taken in combination, it is crucial to examine their molecular interactions. Therefore, herein, the bandgap energy, chemical potential, chemical hardness and softness parameters were calculated using a density functional theory (DFT)-based method. In addition, infrared (IR) spectrum, natural bond orbital (NBO), molecular electrostatic potential (MEP), electron localization function (ELF) and total density of states (TDOS) plots complemented the analysis. Clonidine exhibited greater sensitivity to electrophilic attack, while the electronic affinity of clopidogrel was slightly higher. According to the MEP map, negative charge density was located on the oxygen atoms of clopidogrel, and the positive charge was located on the nitrogen atoms of clonidine. Notably, both the drugs exhibited similar reactivity in water. Clopidogrel was less reactive than clonidine, and the interaction between the molecules occurred <i>via</i> physisorption, which was in agreement with the TDOS plot. NBO analysis revealed a low charge variation, in accordance with the physical adsorption-like bonding between the drugs. The lowest energy for the clopidogrel-clonidine interaction was attained <i>via</i> the formation of four H bonds, as indicated by a significant intensive peak at 3360 cm<sup>-1</sup> in the IR spectrum. Hydrogen bonds played a crucial role in the controlled drug delivery application as it allowed moderate and reversible drug adsorption, facilitating drug release in the biological environment. IR spectra also supported the absence of degradation or chemical reaction between the drugs, confirming the preservation of the individual active pharmaceutical ingredient.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00776j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The drugs clopidogrel and clonidine are frequently used to treat cardiovascular diseases, which are the leading cause of mortality worldwide. Since these medications are frequently taken in combination, it is crucial to examine their molecular interactions. Therefore, herein, the bandgap energy, chemical potential, chemical hardness and softness parameters were calculated using a density functional theory (DFT)-based method. In addition, infrared (IR) spectrum, natural bond orbital (NBO), molecular electrostatic potential (MEP), electron localization function (ELF) and total density of states (TDOS) plots complemented the analysis. Clonidine exhibited greater sensitivity to electrophilic attack, while the electronic affinity of clopidogrel was slightly higher. According to the MEP map, negative charge density was located on the oxygen atoms of clopidogrel, and the positive charge was located on the nitrogen atoms of clonidine. Notably, both the drugs exhibited similar reactivity in water. Clopidogrel was less reactive than clonidine, and the interaction between the molecules occurred via physisorption, which was in agreement with the TDOS plot. NBO analysis revealed a low charge variation, in accordance with the physical adsorption-like bonding between the drugs. The lowest energy for the clopidogrel-clonidine interaction was attained via the formation of four H bonds, as indicated by a significant intensive peak at 3360 cm-1 in the IR spectrum. Hydrogen bonds played a crucial role in the controlled drug delivery application as it allowed moderate and reversible drug adsorption, facilitating drug release in the biological environment. IR spectra also supported the absence of degradation or chemical reaction between the drugs, confirming the preservation of the individual active pharmaceutical ingredient.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信