Reversibly Alterable Hot-Electron Photodetection Without Altering Working Wavelengths Through Phase-Change Material Sb2S3.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-01-26 DOI:10.3390/mi16020146
Yaoyao Li, Xiaoyan Yang, Jia Hao, Junhui Hu, Qingjia Zhou, Weijia Shao
{"title":"Reversibly Alterable Hot-Electron Photodetection Without Altering Working Wavelengths Through Phase-Change Material Sb<sub>2</sub>S<sub>3</sub>.","authors":"Yaoyao Li, Xiaoyan Yang, Jia Hao, Junhui Hu, Qingjia Zhou, Weijia Shao","doi":"10.3390/mi16020146","DOIUrl":null,"url":null,"abstract":"<p><p>Generally, the responsivities of hot-electron photodetectors (HE PDs) are mainly dependent on the device working wavelengths. Therefore, a common approach to altering device responsivities is to change the working wavelengths. Another strategy for manipulating electrical performances of HE PDs is to harness electric bias that can be used to regulate hot-electron harvesting at specified working wavelengths. However, the reliance on bias hampers the flexibility in device operations. In this study, we propose a purely planar design of HE PDs that contains the phase-change material Sb<sub>2</sub>S<sub>3</sub>, realizing reversibly alterable hot-electron photodetection without altering the working wavelengths. Optical simulations show that the designed device exhibits strong absorptance (>0.95) at the identical resonance wavelengths due to the excitations of Tamm plasmons (TPs), regardless of Sb<sub>2</sub>S<sub>3</sub> phases. Detailed electrical calculations demonstrate that, by inducing Sb<sub>2</sub>S<sub>3</sub> transitions between crystalline and amorphous phases back and forth, the device responsivities at TP wavelengths can be reversibly altered between 59.9 nA/mW to 128.7 nA/mW. Moreover, when device structural parameters are variable and biases are involved, the reversibly alterable hot-electron photodetection at specified TP wavelengths is maintained.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020146","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Generally, the responsivities of hot-electron photodetectors (HE PDs) are mainly dependent on the device working wavelengths. Therefore, a common approach to altering device responsivities is to change the working wavelengths. Another strategy for manipulating electrical performances of HE PDs is to harness electric bias that can be used to regulate hot-electron harvesting at specified working wavelengths. However, the reliance on bias hampers the flexibility in device operations. In this study, we propose a purely planar design of HE PDs that contains the phase-change material Sb2S3, realizing reversibly alterable hot-electron photodetection without altering the working wavelengths. Optical simulations show that the designed device exhibits strong absorptance (>0.95) at the identical resonance wavelengths due to the excitations of Tamm plasmons (TPs), regardless of Sb2S3 phases. Detailed electrical calculations demonstrate that, by inducing Sb2S3 transitions between crystalline and amorphous phases back and forth, the device responsivities at TP wavelengths can be reversibly altered between 59.9 nA/mW to 128.7 nA/mW. Moreover, when device structural parameters are variable and biases are involved, the reversibly alterable hot-electron photodetection at specified TP wavelengths is maintained.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信