Max Anjos, Dayvid Medeiros, Francisco Castelhano, Fred Meier, Tiago Silva, Ezequiel Correia, António Lopes
{"title":"LCZ4r package R for local climate zones and urban heat islands.","authors":"Max Anjos, Dayvid Medeiros, Francisco Castelhano, Fred Meier, Tiago Silva, Ezequiel Correia, António Lopes","doi":"10.1038/s41598-025-92000-0","DOIUrl":null,"url":null,"abstract":"<p><p>The LCZ4r is a novel toolkit designed to streamline Local Climate Zones (LCZ) classification and Urban Heat Island (UHI) analysis. Built on the open-source R statistical programming platform, the LCZ4r package aims to improve the usability of the LCZ framework for climate and environment researchers. The suite of LCZ4r functions is categorized into general and local functions ( https://bymaxanjos.github.io/LCZ4r/index.html ). General functions enable users to quickly extract LCZ maps for any landmass of the world at different scales, without requiring extensive GIS expertise. They also generate a series of urban canopy parameter maps, such as impervious fractions, albedo, and sky view factor, and calculate LCZ-related area fractions. Local functions require measurement data to perform advanced geostatistical analysis, including time series, thermal anomalies, air temperature interpolation, and UHI intensity. By integrating LCZ data with interpolation techniques, LCZ4r enhances air temperature modeling, capturing well-defined thermal patterns, such as vegetation-dominated areas, that traditional methods often overlook. The openly available and reproducible R-based scripts ensure consistent results and broad applicability, making LCZ4r a valuable tool for researchers studying the relationship between land use-cover and urban climates.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7710"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92000-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The LCZ4r is a novel toolkit designed to streamline Local Climate Zones (LCZ) classification and Urban Heat Island (UHI) analysis. Built on the open-source R statistical programming platform, the LCZ4r package aims to improve the usability of the LCZ framework for climate and environment researchers. The suite of LCZ4r functions is categorized into general and local functions ( https://bymaxanjos.github.io/LCZ4r/index.html ). General functions enable users to quickly extract LCZ maps for any landmass of the world at different scales, without requiring extensive GIS expertise. They also generate a series of urban canopy parameter maps, such as impervious fractions, albedo, and sky view factor, and calculate LCZ-related area fractions. Local functions require measurement data to perform advanced geostatistical analysis, including time series, thermal anomalies, air temperature interpolation, and UHI intensity. By integrating LCZ data with interpolation techniques, LCZ4r enhances air temperature modeling, capturing well-defined thermal patterns, such as vegetation-dominated areas, that traditional methods often overlook. The openly available and reproducible R-based scripts ensure consistent results and broad applicability, making LCZ4r a valuable tool for researchers studying the relationship between land use-cover and urban climates.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.